REPORT NO.

REFERENCE USE ONLY

DOT-TSC-0ST-77-39

COMPUTER CODE FOR TRANSPORTATION
NETWORK DESIGN AND ANALYSIS

R.P. Harvey
D.W. Robinson

CONTROL ANALYSIS CORPORATION

800 Welch Road
Palo Alto, CA 94304

INTERIM REPORT

MAY 1977

DOCUMENT IS AVAILABLE TO THE U.S, PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22181

Prepared for
U.S. DEPARTMENT OF TRANSPORTATION
OFFICE OF THE SECRETARY

Office of the Assistant Secretary for
Systems Development and Technology

Office of Systems Engineering
Washington D.C. 20590

NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exhange. The United States Govern-
ment assumes no liability for its contents or use
thereof.

NOTICE

The United States Government does not endorse
products or manufacturers. Trade or manufacturers'
names appear herein solely because they are con-
sidered essential to the object of this report.

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Cotalog No.

DOT-TSC-0ST~77-39

4. Title and Subtitle 5. Report Date
COMPUTER CODE FOR TRANSPORTATION May 1977
NETWORK DESIGN AND ANALYSIS 6. Performing Organization Code]
8. Performing Organization Report No.
7. Authorls)
R. P, Harvey and D. W. Robinson DOT-TSC-0ST-76-62
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
Control Analysis Corporation* '
800 Welch Road 11. Contract or Grant No.
Palo Alto CA 94304 DOT-TSC-1059

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
Urban Mass Transit Administration
Office of Transportation Planning

Interim Report
January 1976-October 1976

Methods and Support 14. Sponsoring Agency Code
Washington, D.C. 20590

15. Supplementary Notes U.S. Department of Transportation

*Under contract to: Transportation Systems Center

Kendall Square
Cambridge MA 02142

16. Abstraoct

This document describes the results of research into the appliction of the
mathematical programming technique of decomposition to practical transportation
network problems. A computer code called CATNAP (for Control Analysis Trans-
portation Network Analysis Program) has been developed in the course of this study;
this code has the capability to solve the following problems.

1. The traffic assignment problem with fixed demands.

2. The transportation network design problem with or without a budget
constraint.

3. The optimal staging problem for transportation network investments over
a fixed time horizon.

In this report we describe the basic structure and algorithms employed in
CATNAP and give actual numerical results obtained in some representative sample
problems. These results indicated that CATNAP is an improvement over existing
transportation network codes, particularly for solving the network design
problem.

17. Key Words 18. Distribution Statement

Transportation Network

Traffic Assignment DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC

Budget Constrai THROUGH THE NATIONAL TECHNICAL
% t n nt . INFORMATION SERVICE, SPRINGFIELD,

Design and Analysis VIRGINIA 22161

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages | 22, Price
Unclassified Unclassified 125

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

PREFACE

The research herein reported was funded by the Transportation Advanced
Research Program (TARP) under the auspices of the Office of the Secretary,
U.S. Department of Transportation. Supplemental funds were provided by
the Urban Mass Transportation Administration. Technical review is the
responsibility of the Special Studies Branch, Research Division, Transporta-
tion Systems Center. The objective of the TARP program is to stimulate
basic scientific research in areas that are of major importance to the U.S.
Department of Tramsportation. This particular project is intended to develop
computerizable algorithms that will permit network analysis techniques to be
applied to very large networks. .

This report describes the implementation, testing and performance of
some of the algorithms presented in an earlier Control Analysis Corporation

report.

iii

36 it 2, 3 = = 3
° oy oz [0z~ or— = 2
@ P e b IV VR NN T U T = = = £
L [t T aus e e sme S e = =
oou 091 ozl . oe oc_ [ov- =g = =
R 996 € s b = I—
de = = -
© = =
N RI0CWY 12€ pre sunyeiadhwo} = =
. VeyuIN e ey} /6 SMS2) e - Mﬂl e
(13ux3) JYNLYHIIWNIL » e -
o = =
v, nv> sped g3 £ siau 2iqnd ™ ——i o
R 193 91qn> 14 $2010w 21gn3 P = -
1% suoy b [24] S0 | Ind = o
Wb suend %0t ss0t1) 1 = = -
o snd vz s ' - = =
) se3uno p1ayy) saM W w = -
« TE E
AKAT0A) = =
= m Hl -
$u0) Boys i (6% 000t) SPUUOY \ e
qQl spunod bak 4 swesbo)iy 6y - = —
10 s9duno $c0'0 swesb [= =
] = =
—_
(1yviam) ssyiy - =4 "
™) —1 ——
swaw 5T (9 000°01) $2:m1204 ny = = —
P sap @aenbs »”0 £2313u0] 1y senbs ~§_ = o
& spicA asenbs F s4010w Simnbs & = IM —
-.: Soyaut asenbs 90 $401RU1IUSI BaBnbE ~Eo Hlﬂl.h = w
s —= —
VINY =
s —E —
w LENY) 90 31 oU(1Y any = -
pA spauh vt s13300 w = = =
L] 10} £t ssotaw w = -
w sayour o £2933W0Le un = et raamd
u sayoul ¥0°'0 823301 || uay M -
”]M el
- = -
H19%u31 = — =
= = T
logmig puyj of Aq Agdningy mouy ROL BRYM |oquig - W =
] =
S2:NSROlY PN WOIj SUCISIAAUSY S1RWIX0:ddy o E
o = b »

|

SHOLIY4 NOISUIANOD DIHLIW

Teo-TE%E

w
w

ek

wd
w2

1oquis

ammIIRUNY
sMs|0)

£1315w 21Qn3
$1019w 2iqN3
s

S8

[YE]

[T
LY

$auLo)
sweibaity
sweib

£330y
$0u |1y witnbs
Bi31Au dsenbs
1910w Benbs
$301N1ILD AITNDS

s1313umjiy

siopw
SivtounINGd
s1310w1U03

Futj o}

1ze
Luilarngns
nye) 6/5

s eaduel
Hsyuriye 4

{33ex3) JynivyIdwil

&€Wwo €pivA 31GN3
£0'0 1939} 21gna
8'c swot|eb
$5°0 sisenb
[AX] siwd
[74] sdn>
ot £82uUN0 pIng)
sl suocdsagnl
s suoudseey
IKNT0A
(91 0002}
60 S0y LOYS
sr'0 spunod
14 saduno
{1461am) SSYW
e 10100
(%4 29|1u Qlenbs
8’0 spivh aignbe
60°0 199 asonbs
$'9 S0PU 8MNdS
vivv
gL sopw
(3] spaed
ot 1009}
§'2 soyau
H19N
Ay Al Meuy nOL NI

$3IRSRa U9 O} Su0ISIBAUOD) dewixoiddy

1.

g2

1equis

1.

Section

1.1
1.2
1.3
1.4
1.5

1.6

2.1

2.2

2.3

2.4

2.2.1

2.2.2

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

2.3.6

2.4.1

2.4.2

CONTENTS

Page
INTRODUCTION AND SUMMARY « .2l
Background . . St e e e e e e e e e e e e 1

Traffic Assignment Problem 2

Network Design Problem oo 4
Investment Staging Problem 5
Potential Applications « v e e e 6
Potential Extensions 8

PROBLEM FORMULATIONS AND ALGORITHMS e 9
Introduction, o e e 2
Traffic Assignment Problem « o 4 . 9
Problem Formulation 40
Solution Algorithm e . .. 15
Network Design Problem 21
Problem Formulation -- Without Budget :Constraint 22
Solution Algorithm -- Without Budget Constraint 28

Problem Formulation -- With Budget Constraint. 33

Solution Algorithm -- With Budget Constraint. . 34
User Equilibrium Assignment, ., . ., . . 36
Network Design with Discrete Investments c .. 37

Investment Staging Problem« ... 38
Problem Formulation 39

Solution Algorithm B

3.

Section

3.1
3.2
3.3
3.4
3.5

3.6

4.1

4.2
4.3
4.4

405

4.1.1

4.1.2

4.1.3

CONTENTS (Cont'd)

COMPUTER PROGRAM . . . ¢ « « « .« .

Introduction and Overview
Data Input Modules .« e s e e e

Traffic Assignment Modules
Network Design Modules « . . .
Capabilities and Limitations
Potential Extensions and Modifications
NUMERICAL RESULTS

Test Problems Solved

Twenty-four Node Sample Problem .

Three hundred and Ninety-four Node Sample Problem-

Investment Staging Sample Problem

Traffic Assignment Results .

Network Design Results

Investment Staging Results « &
Recommendations for Further Study

REFERENCES

APPENDIX A - CODE LISTING

APPENDIX B - INPUT FORMATS

APPENDIX C - JOB CONTROL LANGUAGE
APPENDIX D - SAMPLE NETWORK DESIGN MAIN PROGRAM
APPENDIX E - GLOSSARY OF SYMBOLS T
APPENDIX F - REPORT OF INVENTIONS

vi

51
62
65
70
75
79
79
80
80
82
83
85
88
91
92
93
94
99
107
110

117

ILLUSTRATIONS

Figure Page
2.1 Lower Bound on Objective in Golden Section Search 18
2.2 Modification of Piecewise Linear Travel Time Function 20
2.3 Optimal Cost and Investment Functions for Piecewise
Linear Formulations. . . + « « v v v « o . . . 32
2.4 Variation of Total Investment with Lagrange Multiplier 35
3.1 Flow Diagram of CATNAP v v v v v v v vv o o .. 45
3.2 Generation of Piecewise Linear Investment Curve (Solid
Line) from Input Discrete Investments. 58
4,1 Twenty-four Node Sample Problem 81
4.2 Traffic Assignment Algorithm Convergence 84

vii

Table
3.1
3.2
3.3
3.4
3.5
4,1

4,2

TABLES

Summary of Modules in CATNAP .

Basic System Parameters in CATNAP with Their Meanings
Data Sets Used in CATNAP e e e e s e

Computer Memory for CATNAP

Computer Time for CATNAP e e e e e e e e e e
Traffic Assignment Algorithm Convergence .

Network Design Algorithm Convergence

viii

52

73

74

85

87

1. INTRODUCTION AND SUMMARY

1.1 BACKGROUND

This study is concerned with solving problems which involve network
models of transportation systems. Such network models tend to be quite large
in practice, so that it is often computationally desirable to separate the
resulting problems into simpler or smaller parts before solving them; this
separation is done by means of so-called decomposition techniques.

A survey of applicable transportation network problems together with
proposed decomposition algorithms for their solution have been presented in
the report "The Application of Decomposition to Transportation Network Analysis"
by G.B. Dantzig, S.F. Maier and Z.F. Lansdowne (reference [1]). The current
report describes the implementation, testing and performance of some of these
new algorithms in a computer code called CATNAP (Control Analysis Transportation
Network Analysis Program). A fuller explanation of the mathematics involved
in the algorithms and a summary of previous research in this area are presented
in the earlier report.

The CATNAP code can solve the following types of transportation network

problems:
a) Traffic assignment with fixed demands,
b) Network design with or without a budget constraint,
c) Optimal staging of network investments over time,

In this section, we briefly describe each of these problems and demonstrate
the capabilities of CATNAP by summarizing the results of using the code to
solve a representative problem of each type. In the remainder of the report
a more detailed approach is adopted: Section 2 gives the mathematical formu-

lation of each problem and describes the solution algorithm employed; Section

3 discusses the organization, operation and use of CATNAP; and Section 4 sets
forth the actual numerical results obtained from the sample problems. The
appendices contain detailed information (input formats, etc.) for using
CATNAP.

1.2 TRAFFIC ASSIGNMENT PROBLEM

The objective of the traffic assignment problem is to distribute a given
set of interzonal trip requirements over the links of a network in an optimum
manner. This may have the goal of minimizing the total travel time for all
users of the network in the face of comgestion (system optimal assignment), or
it may be required to find a flow pattern such that no individual traveler can
decrease his time by selecting an alternate route, given that all others remain
on their present paths (user equilibrium assignment); the solutions to these
two problems are generally quite different, though the solution techniques
used are essentially the same. Although we use the words "travel time'" here
and throughout this report, we recognize that there are other cost functions
which may be appropriate in some applications: fuel comsumption for example,
or number of accidents.

The main difficulty in solving the traffic assignment problem is that
the average time for a gi&en user to travel along a link typically depends on
the number of other users of the link. Changing total link flow to alter
this average time is very involved since total flow is composed of components
from many different origins, and these components (termed "commodities' in thi:
report) must be kept distinct to satisfy the trip demands in the network.

Our solution technique for this problem makes use of an algorithm for
finding the shortest path through a network; when all trip demands are assigne
to the links lying on the shortest path between the respective origin and

destination, the resulting flow pattern is clearly feasible since all demands

are satisfied. The algorithm (which is described more fully in Section 2.2.2)
generates a series of such feasible flow patterns and combines them with an
existing flow pattern in order to reduce total travel time; this iterative
procedure converges to the optimum solution.

A major advantage of our approach (which is basically an application of
the Frank-Wolfe Algorithm ref [9]) is that individual commodity flows need
not be explicitly retained; the trial flow patterns generated by the method
consist only of total flows. This means that very large problems can be solved
on a computer using only high-speed main memory without relying on slower peri-
pheral storage devices (tape or disk). A further advantage is that it is
easy to compute a lower bound on the optimum solution value, so that the method
offers a built-in stopping criterion: Finally, the algorithm can accommodate
a wide variety of nonlinear travel gime functions; in fact, nonlinear differen-—
tiable functions work better here than the commonly used piecewise linear
approximations.

Considerable computational experience with the Frank-Wolfe Algorithm has
generally confirmed :the above advantages; one shortcoming has been noted,
however. This is the slow convergence of the method to the final optimum
solution. The first few trial flow patterns typically improve the starting
solution substantially, but later iterations change the solution very little.
Perhaps 15 to 20 iterations are needed in large problems to get within 3 to 5
percent of the optimum, but reaching 1 percent may require 40 to 50 iterations.
See Section 4.2 for an example of this behavior.

In summary, quite large traffic assignment problems (say, 5000 nodes
and 15000 links) are within the capability of CATNAP. Solutions within 3 per-
cent of the optimum can be obtained with a fairly modest expenditure of computer

resources.

1.3 NETWORK DESIGN PROBLEM

An efficient way of solving the network design problem is the major new
capability offered by CATNAP. This problem involves the improvement of links
in a transportation network through investment; the goal may be either to
minimize total travel time subject to a budget constraint or else to minimize
a weighted combination of investment and travel time.

This problem is difficult to solve because improvement of one link
typically affects flow on many other links; adjusting the flow pattern to
even a single improvement thus involves the same kind of difficulties as
the traffic assignment problem. Furthermore, the effects of different invest-
ments interact with one another thus adding another degree of complexity to
the problem. The usual method used has been to perform a series of traffic
assignment problems with differing manually determined investment "scenarios";
this offers no guarantee that an optimum solution will even be approached.)

The method employed in CATINAP to solve the network design problem is
to transform the problem into an equivalent traffic assignment problem in the
case when there is no budget constraint, and a sequence of traffic assignment
problems when there is a budget constraint. The Frank-Wolfe method described
in the previous section is then used to solve the problems. The link conges-
tion functions for those links with investment opportunities now become more
complex. There is a component corresponding to traffic congestion, and a
component associated with the investment level. This composite function
results from determining the optimal investment for each link as a function of
the total flow on the link. It reflects the optimal trade-off between increase
of investment and decrease of congestion using a given current conversion

factor.

For the network design problem with no budget constraint the determina-
tion of the optimum link investment depends on minimizing a weighted combina-
tion of travel time and investment dollars. The weighting factor for the
investment expresses the conversion between dollars and travel delay and
appears directly in the objective functionm. This problem requires about the
same effort to solve as a traffic assignment problem.

The other form of the network design problem (with budget constraint) is
somewhat more difficult to solve. 1In this case, the problem is solved with a
sequence of values for the weighting factor which now plays the role of a
Lagrange multiplier. This multiplier is successively adjusted until the sum
of all the link investments is close to the required total budget. It has
been found that this procedure requires approximately seven different multi-
plier values, and takes about three times as long to solve as a comparable
traffic assignment problem.

CAINAP provides a large number of user options for solving the network
design problem, including solution tolerances, output reports and post-opti-
mality adjustments. Besides being more flexible, the code is several orders
of magnitude faster than the best previous effort in this area, which used a
linear programming formulatioﬁ of the problem with piecewise linear approxima-
tions to the actual nonlinear cur?es. It is estimated, that the present
version of CATNAP can solve a network design problem for a 2000-node, 6000-arc
network in less than 30 minutes of processor time on an IBM 370/168 computer.
1.4 INVESTMENT STAGING PROBLEM

When a major improvement Project is to be undertaken in an existing
transportation network, it will often take a long time to complete. 1In

this case, it may well be desirable to improve some links earlier than others;

the investment staging problem thus seeks the optimum sequence in which to
improve the links at given stages over a fixed-time horizon.

Many formulations of this problem are intractably large for practical
transportation networks because they require the simultaneous solution of
several network design problems which are linked together. The formulation
used in CATNAP, and described in Section 2.4.1, allows the investment staging
problem to be solved as a sequence of essentially independent design problems
with a resultant saving of problem size and solution time.

Several heuristic methods have been devised for this problem. While
CATNAP procedures give uniformly better solutions than the other techniques,
the solutions are close enough that the somewhat greater computer execution
timé required by CATNAP may be a factor favoring the heuristic approaches.

1.5 POTENTIAL APPLICATIONS

The CATNAP code is intended primarily to assist a transportation planner
in making the best use possible of limited funds for the improvement of a large
transportation system. Because the interactions of traffic flows in such
systems are so complex, it is believed that a mathematical solution from CATNAL
will be a very valuable aid to the planner's intuition, which alone can be
misleading:

The main application area for CATNAP as it is presently configured is
for urban highway planning. The use of network models is fairly well
established in this area and planners are familiar with the mathematical evalu:
tion of improvement proposals. CATNAP cannot explicitly allow for city politi
pollution, planning boards and many other constraints which are very real to a
urban planner. For this reason, it is recommended that the initial CATNAP

improvement plan be treated as a "best case" and that the other considerations

be imposed in later runs using the code's bound-setting capability (see equation
(19) and Section 3.2). This interactive use of CATNAP is made both convenient
and economical by the code's restart mechanism which allows subsequent runs

to begin the solution where the initial run left off.

Some modifications to CATNAP will be needed to enable the code to
solve the modal split problem, i.e., selecting which transit method (of
several) each commuter chooses and determining the resulting traffic patterns.
The modifications would involve both the data input modules of CATNAP and the
link congestion functions used, but the code itself is flexible enough to
solve this important urban problem without major reworking.

CATNAP will require the same type of modifications (i.e., data input
and congestion functions) to be applied in areas other than urban planning.
The use of network models is not nearly so well established in railroad or
airport applications (to give two examples) but there is no reason that CATNAP
could not be applied in these areas. For example, many rail links have low
speed limits (called "slow orders") due to poor track maintenance. CATNAP
could be used to determine an optimum plan to minimize travel time by spending
maintenance dollars to remove the slow orders.

CATNAP has been designed as a highly efficient and convenient computer
program. Its speed and computer memory requirements (see Section 3.5) are
comparable to those of the UTPS code UROAD and its modular design facilitates

any necessary modifications to deal with different classes of problems.

1.6 POTENTIAL EXTENSIONS

CATNAP, although originally envisioned as an exploratory tool, is
both efficient and flexible enough to be used as a production code. The
code is organized in a highly modular fashion and improvements are relatively
easy to carry out.

Several possible extensions and modifications are outlined in Section
3.6 which could be implemented in CATNAP. They fall into one or more of
the following four categories:

a) Broaden the capabilities of the code; for example, allow the
use of alternative travel time and investment functions, "negative' improve-
ments in network design, or sevéral independent budget constraints.

b) Increase the size of problem which can be handled by such
techniques as dynamic core allocation and external storage for trip table
data.

c) Improve the efficiency of the code by exploring algorithm
variations in the Frank-Wolfe procedure, the golden section search technique,
the shortest path algorithm and the network design subproblem solution
method.

d) Enhance user convenience by making the input and output options

more flexible.

2. PROBLEM FORMULATIONS AND ALGORITHMS

2.1 INTRODUCTION

In this section, we describe the problems which the CATNAP code is
designed to solve, and we summarize the solution techniques which are employed.
This discussion here is intended to be fairly specific with respect to what
has actually been implemented and tested, in contrast to reference [1] which
sets forth a general framework for applying decomposition techniques to trans-
portation network problems. See Section 3.6 for an account of some areas
in which the work reported here can be extended with a relatively small amount
of effort.

For each of the three major problem types (traffic assignment, network
design and investment staging), we give an annotated mathematical formulation
of the problem together with some implementation details. This is followed by
a description of the algorithm used in CATNAP to solve the problem. A more
general account of these matters is given in the earlier report [1].

2.2 TRAFFIC ASSIGNMENT PROBLEM

The links* in practical transportation networks are subject to conges-
tion as the volume of traffic increases. For this reason, the determination
of the best routes to be taken by all the users of a network is a difficult
problem: the delay encountered on a given link depends on the total flow of
traffic, which means that interactions between travelers from different origins
must be explicitly accounted for. Finding a traffic routing which minimizes

total time (the so-called "system optimal" problem), or for which no user can

*
The terms "link" and "arc" are used interchangeably in this report.

find an alternate route with a lower time while keeping the routes for other
travelers fixed (the "user equilibrium" proBlem), constitutes what is known
as the traffic assignment problem.

The decomposition approach taken to this problem allows one to determine
for each origin in the network a trial solution that is independent of the
flows from all the other origins. The interactions between different origins
are then managed by seeking an optimal combination of the trial solution
with an existing solution. The procedure is then repeated for a new trial
solution until a satisfactory answer is obtained.

The traffic assignment algorithm described here is at the heart of the
CATNAP code, and it is used extensively in the solution of network design
problems (see Section 2.3). In the remainder of this section, we give a
mathematical formulation of the traffic assignment problem and a brief des-
cription of the solution method.

2.2.1 Problem Formulation

The number of distinguishable flow commodities in the traffic assignmen!
problem is equal to the number of origins, the number of destinations, or the
number of origin-destination pairs, depending upon how it is formulated. 1In

the following formulation, we distinguish commodities by origin node.

10

with respect to:

Subject to

where

r ;
fJ_ and fj s Jed4,

r
f, - r
Z 3 ij
i

v

the set of links in the network s

total flow on link j

11

2

(1)

, R
(ieN; r=1,...,R), (2)
(jed) , (3)
(JeA; r=1,...R), (&)

He
Lo

total travel cost on link j when flow is fj s

flow on link j from origin r,

the number of origin nodes in the network,

-0, . if i is a destination node,

\ 0 otherwise,

the number of trips originating at origin 1 and termi-

nating at destinmation j ,

the set of nodes in the network,

e

the set of links terminating at node

the set of links originating at node 1 .

The definition of cost functions Tj(-) depends on whether a user

equilibrium or system optimal traffic assignment problem is being considered.
In accordance with the results summarized in [1], we first define the

average cost function

Cj(fj) = average (per unit) time for travelers on link

j when the flow is fj.

The objective function component for link j for system optimal assignment is

Tj(fj) = Cj(fj) CE (5)

and for user equilibrium assignment is

£,
J

Tj(fj) =/ Cj(z)dz . (6)
0

The average cost function Cj(') may be chosen to have many different
functional forms as long as it is non-negative, continuous and a non-decreasing
function of fj . In CATNAP, a simple polynomial has beeﬁ chosen which leads
to the travel cost function Tj(-) commonly used by the Federal Highway

Administration (FHWA). The FHWA curve for system optimal assignment is given

by
£)k
T.(f,) = tf |1+ |
J(E) = eE, (CAJ_ , (1

where

tj = free-flow travel time for link j (positive),

CAj = capacity parameter for link j (positive),
r = positive constant (FHWA uses 0.15),
k = positive constant (FHWA uses L)

From (6), the FHWA curve for user equilibrium assignment is

£.
- r (3
Tj(fj) = tjfj L+ 1 (CAJ) . (8)

13

Note that although the objective function value for the user equilibrium pro-
blem is computed from (8), the actual travel time is still given by).
Note further that the only difference between (7) and (8) is the factor
1/(k + 1) in the congestion term, and that this may be accounted for by simply

/k. (This factor

multiplying the link capabity CAj by a factor of (k + l)l
is 1.495 for k = 4.) The behavioral implication of this analysis is that
under the user equilibrium objective individual travelers are approximately
50 percent less congestion-averse than a system optimal traffic assigmment
would indicate.

Previous researchers have often used a piecewise linear cost function
for link travel time, and CATNAP also retains this capability mainly for use

in certain network design applications. - If there are Mj linear segments assoc:

ated with the curve for link j, we replace (3) with

3 R
z fo“ = E fjr , (jeA), (3°
m=1 r=1

and we add the upper bound conmstraints

Osx;SK;n, (jeA;m=1,...,Mj) g (9)

M,
In practice, we take KjJ to be infinite. Now if the slope segment m in

the cost curve for link j is C?, we replace the objective function (1) by

14

M,
i
MINIMIZE Z = E ¢t x™ (1°)
J 3 ’
jeA m=1

This formulation may be used for either user equilibrium or system
optimal problems by an appropriate choice of K? and C? . Referring to the
FHWA curve (7), the segment lengths K? and the slopes C? depends on the capa-
city parameters and the free-flow travel time parameters, respectively; this
may be seen from Eqs. (29) and(30) in Section 2.3.1. Throughout this report
we assume that X?'s are ordered so that C? < C? for m < n.

Although the new problem (1-), (2), (3°), (4), (9) is a linear program
it is no easier to solve by our method than the nonlinear program (1) through
(4); furthermore, the new problem is so much larger than the nonlinear one
that it is beyond the capability of general-purpose linear programming codes
except for very small networks (see Section 4.3). It is thus anticipated
that the main use of this formulation will be for network design situations as
described in Section 2.3, and that most links in the network will use the
appropriate FHWA curve [(7) or (8)].

2.2.2 Solution Algorithm

The traffic assignment problem solution technique must begin with an
initial feasible flow pattern; i.e., a set o? f§ values satisfying (2) and
(4). A simple way to find such a pattern is to assign all trips between each
origin and destination to the arcs lying on the path with the smallest total
free-flow travel time. TFor a given origin, the determination of a set of mini-
mum cost paths to all the destinations is called the shortest path problem;
an initial feasible solution to the traffic assignment problem may thus be
found by solving a shortest path problem for each origin in the network using

the parameter tj (free-flow travel time) as the cost for each link j.

15

For the shortest path problem, the basic algorithm due to Dijkstra [2]
is used with a binary-tree structure. This approach offers several important
computational advantages over other common implementationé of the Dijkstra
method. For a complete description of the method together with an analysis
of its performance, see reference [5].

Once a feasible flow pattern (referred to as Fl) has been found, a secon
feasible flow pattern (F2) is generated by the algorithm. This is done in the
same way that the initial pattern was found; i.e., by solving a set of shortest
path problems. In this case however, the cost of arc j is taken to be the
marginal cost of flow on the arc, Tg(Flj)' Thus, arcs with very high con-
gestion present a great deal of impedance to the shortest path routine, and the
trial-flow pattern F2 is.likely to result in reduced flow on these arcs.

Setting up the shortest path problems with marginal cost is equivalent
to taking a linear approximation to the objective function (1) at the current
flow values F1l, while the shortest path problems themselves constitute a
linear program. This technique is called the Frank-Wolfe Algorithm [9]. Note
that the linear program is particularly easy to solve because each origin
can be treated independently of the others; i.e., we have successfully decom-
posed the problem by origin.

A particular advantage of using the Frank-Wolfe Algorithm is that a
lower bound on the objective function value in (1) may be obtained quite easily
Also, since Fl is a feasible flow pattern the current total travel time is an

upper bound on the optimum value of Z. Denoting this optimum by Z*, we have

Z [Tj(Flj) + T(F1,) (F2; - Flj)] <z < ZTj (F1,) . (10)

jeA jeA

16

It has been found that (10) may be used as a most reasonable criterion for
terminating the algorithm.

The third phase of the Frank-Wolfe Algorithm is to combine the two
feasible flow patterns Fl and F2 in an optimum way. Formally, we want to

solve the one-dimensional optimization problem

MINIMIZE Z(¢) = ZTj[(l - ¢)F1j + ¢F2j] ,0<9<1 ., (11)
jeA

For the FHWA cost function (7), the problem (11) is a polynomial in ¢ which
is, furthermore, a convex function of ¢ . The most general method for
solving (11) is golden section search [3], and this technique is used in
CATNAP. It is an iterative method, and in [4] a lower bound on the objective
value is derived based on the convexity property of the objective function.
This is used in CATNAP as a termination criterion for the golden section
search. The two general cases and the corresponding derived lower bounds are
illustrated in Figure 2.1.

The final result of the optimization (11) is a value of ¢* which is used

to compute a new feasible flow pattern from

F1; = (1- ¢*)Flj + ¢*F2j , (jea) . (12)

The Frank-Wolfe Algorithm is then repeated using F1l’ in place of F1

A summary of the method as applied here is given by the following steps:

17

Objective Function

Value

Lower Bound
On Objective

Flow Vector

Weight (¢)

Objective Function

Value

Lower Bound
On Objective

Flow Vector

Weight ($)

Case 1

Fl L(F1 + F2) F2

0 0.5 1

Case 2

4

F1 1, (F1 + F2) F2

Figure 2.1 - Lower Bound on Objective in Golden
Section Search

1Q

Step 1. Generate a feasible solution Fl. Set the lower bound to O.
Step 2. Evaluate the marginal costs Tg(Flj), and use these with the
shortest path routine to develop a new feasible flow patterm F2.
Step 3. Compute a new lower bound from (10). If this is greater than
the current lower bound, replace the current bound with the
new one.
Step 4. Solve the optimization problém (11), and replace Fl with F1~
computed from (12).
Step 5. If ¢* = 0 or if the lower bound (10) is close enough to the
current objective value, stop. Otherwise, go back to Step 2.
The main difficulty in applying this algorithm for the Tj(') functions
described in Section 2.2.1 occurs for the piecewise linear formulation (17).
The Frank-Wolfe method requires that the objective function be differentiable,
and this is not the case for (1°) since Tj(') is not differentiable at the
breakpoints of the piecewise linear curve. Accordingly, a small positive
parameter 1is used to "round the corners' as illustrated in Figure 2.2.

The derivative of T,(*) is thus assumed to vary linearly over each of the
m . m .
intervals L. kY + ¢
(Z Ry -e 5 2K
i=1 i=1

As far as the derivative is concerned, the total time function is then

m m
T.(£,) = Ec.lx.l+ m .-E 1
J(J) J] CJ fJ Kj
i=1 i=1
m - 2
1 m {
+ (c“.‘+ -c.)/h T P i
[j i € 1 Kj € ,
i=1
for
m m
i i
E K. - < £, K. H
vy €SS 3 7€ 5 (13)
i=1 i=1

It should be noted, however, that Tj(') is still computed from (17).

. 19

Unmodified Travel Cost j

Function
T.(f.
J(J)
/l
{
!
1 n 2 » Total Flow £,
0 K K3 + K¢]
1 J 1 |
< X, e X% >« X? Segment Variables
Derivative of Unmodified J J J
Travel Cost Function A
dT.
df 3
| C.
J J
c?
J
ct
J |
| |
> £,
Kt kL o+ K J
] J
Modified Derivative ~
dT. |
1
dfj
c3
J i
|
C% /// |
| Y }
e
ct / : E
J I | :]
1 N
P 10 > £,
E € E € J

Figure 2.2 - Modicication of Piecewise Linear Travel Time Function

20

2.3 NETWORK DESIGN PROBLEM

The network design problem is concerned with adding or modifying
links in a transportation network through the investment of money. The ob-
jective may be either to minimize some weighted combination of total travel
time and invested funds or simply to minimize total travel time subject to
a budget constraint. CATNAP has the capability to solve either of these for-
mulations of the problem.

The basic idea of the neﬁwork design algorithm is to redefine the link
cost function to include both the amount of money spent on improving the
link and also the effect of the improvement on the total travel time. When
this is done the optimum investment for each link may be found as a function
of only the flow on the link independent of any other investments. It turns
out that the cost function is still a convex function of flow, so that the
Frank-Wolfe traffic assignment algorithm described in Section 2.2.2 may still
be used to find the optimum flow pattern. A budget constraint may be imposed
by adjusting the relative contribution of investment to the link cost function
until the correct expenditure ensues.

The decomposition of the network design problem by links in this manmner
greatly facilitates its solution. It is necessary, however, to use a system
optimal traffic assignment when this is done and also to require that invest—
ment decisions be continuous rather than discrete. See Sections 2.3.5 and
2.3.6 for further discussion of these restrictions and for an account of methods

for dealing with them.

21

2.5.1 Problem Formulation -— Without Budget Constraint

An important step in obtaining a mathematical formulation of the
network design problem is to treat the interaction among travel time, flow
and investment, Let Dj(fj’ zj) be the total travel time on link j as a
function of the flow fj and the investment decision zj for that link, and
let Gj(zj) be the cost of the decision zj . The multiplier) 1is assumed
to represent the conversion factor between investment dollars and travel time.
The total social transportation cost (user travel time plus investment) for

link j 4is given by
D.(f., z,) + 2G,(z,) . 14
§(E5r 2,) +36,(2)) (14)
The network design problem is then formulated as follows:
MINIMIZE Z = [D. £f., z.) + AG.(2, s 1
D (25085 =p) +aey(2))] (15)
jeA

r

with respect to fj’ fj’ z (jeA; r=1, . . ., R) subject to

I

Z Z T hy , (ieNjr=1,...,R) ,(16)

JeW JeV

go= D (jeh) (17)

22

o, (jeA; x =1, . . . ,R)

; (18)

z. < P, , (1ed) . (19)

The notation in (15) through (19) is identical to that used in (1) through

(4) with the addition of the following:

D (£4, 24)

0f the many

total travel time on link j as a function of flow fj
and investment decision zj

cost of decision zj on link j
investment decision for link j measured in units of capacity.

non-negative multiplier expressing the conversion between

travel time and investment dollars.

minimum value of the investment decision for link j

maximum value of the investment decision for link j

possible choices for Dj(-,-) and Gj(v), we are restricted

by the solution algorithm to those which result in a convex cost function for

each link. To simplify the discussion here, we will consider only the three

options which are provided in the CATNAP code itself, while recognizing that

numerous other possibilities exist. See reference [1] for further discussion

of this point.

When the FHWA travel time curve (7) is used, it is assumed that the effect

of investment is to increase the capacity parameter CAj, and that the investment

23

function Gj(') is linear. We choose zj to be measured in units of capacity

increase. This then results in

k
£
Dj(fj, zj) = tjfj[l + rcar—:f;;> J R (20)

G;(z) = 8 (21)

.z.
J 3]
These functions result in a convex cost function for the arcs as long as
CA.j + zj > 0; note that this permits "negative" investments; i.e., monetary
benefits resulting from a decrease in link capacity.

The second and third options in CATNAP use the piecewise linear formula-
tion of Section 2.2.1. In both cases, Gj(-) is assumed to be a piecewise

linear convex function, and the effect of the investment.is assumed to vary

the lengths of the segments in the Tj(-) curve. Thus we have

M.
m m
D.(f.,2z.) = MIN C., X.
(g = Y et gl (22)
N m=
Xj
subject to
M,
3
£, = x®
j Z i 4 (23)
m=1
m m m
0 < X. K, F. z. = -
_xJ < 5t z; (m 1,2...Mj 1),(24)
M,
0<x. 4 (25)

24

Also,

63(z) =D &iel (26)

subject to

N.
J
Il
%5 = Z % (27)

n=1
0< z;l < G;l s (n=1, ..., Nj) s (28)

where F;n is a factor determining the change of the length of the m-th
cost curve segment with respect to the investment decision, and Nj is the number of
linear segments in the investment function for link j . The effect of the

investment decision zj is thus to change the length of segment m of the

travel time curve from K;n to K;n + ijzj

A piecewise linear travel cost curve may arise from a variety of under-

lying functional forms for Tj(') . If it is an approximation to the FHWA
curve (7), we take the abscissa values for the curve at multiples of the

capacity parameter CAj, i.e. at achj 2 aQCAj, o e ey aﬁQAjs and choose

the ordinates to lie exactly on the FHWA curve. The slopes are then given by

k k
o (L+rx) -q (1 + rq)] :
m [m m m-1 m-1
Cj = - tj ’ (29)
o -
m m-1

and the breakpoints by

K, = (o.’m-am_l)CAj s, (m=1, ..., Mj) , (30)

25

where %, is taken to be 0. For a fixed set of multipliers {a ;} then,
the segment lengths for a link are functions of the capacity parameters CAj,
and the slopes are functions of the free-flow travel time tj. An unbounded
final segment (Kj Mj = o) would be represented with an arbitrarily large
slope C. Mj .
]

Suppose now that the effect of investment is to increase the link capacity

parameter as in (20). This is the second investment option in CATNAP; since

tj does not change, the segment slopes are unaffected, but the capacity increase

to CAj + zj must be reflected according to (24) by selecting

F? = o - e (m-1, ..., Mj). 31

Note that this is essentially the same problem as in (20) and (21), except
for the more general form of Gj(-) that (26) to (28) permit.in this case.
The third option in CATNAP involves investments which decrease the
free—flow travel time; say, from tj to tg. A simultaneous increase of capa-
city from CAj to CAE is also allowed, but it is possible for CAj = CAE .
Here we choose the investment decision zj to be measured in units of capacity,
so that O f_zj §_CA3 . Now (24) does not permit alteration of the slopes
C? in the piecewise linear curve. Thus, if the Dj(fj, zj) function is to re-
flect properly the post-investment situation, segments with slopes corresponding
to the new t3 value must be present. These are introduced into the curve and
interleaved with those for the existing tj value; in order that this augmented
curve also correspond to the zero investment case, we select segment lengths
m

Kj = 0 for the new segments.

26

The effect of investment in the travel time improvement option of CATNAP
is thus to cause the growth of the zero-length segments corresponding to the

new time ti - For these segments, then, we choose the multipliers

Fj = Q =Q s (32)

so that the post-investment curve has the correct breakpoints for the new
capacity CAE . Of course, the segments of the Tj(-) curve for the old
travel time tj cannot be left in the post-investment curve; for this reason,

we define the negative multipliers

Foo= =(op-a) CAj/CAj' , (33)

so that the constraint (2L) causes these old segments to vanish when the
improvement is complete.

Note that in this third option the definition of the improvement zj
is somewhat different than for the first two. 1In all cases, we have taken

zj to be measured in units of capacity (vehicles/hour, passengers/day, etc.),

but for the first two options it is interpreted as units of increased capa-
city, while for the third we may think of it as units of the total final
capacity which have been introduced. The maximum improvement in cases 1

and 2 is just CAE - CAj, while for case 3 it is CAE. It should also be noted
that when a partial improvement is implemented in case 3, that is when

0 <z, < CAE, the effective travel cost curve is a linear combination of the

J

two extreme travel cost curves.

27

2.3.2 Solution Algorithm -— Without Budget Constraint

The solution technique developed in [1] for the network design problem
(15) through (19) requires that a separate optimization be performed for each
link; the goal of this optimization is to select the investment decision zj

which minimizes the total social transportation cost for the current flow fj

on the arc. The resultant cost is then

B (£;) = z;xi:n[Dj(fj, 25) + 26, (2;)] (34)
J
subject to
LJ <z < PJ (35)

The optimum investment decision z§ depends on the flow fj; thus we define the

function
(E,) = 1 f z., for which H,(f, 6
IJ(J) value o ; J(J) (36)
attains its minimum.
The objective function (15) for the network design problem may now be
replaced by
MINIMIZE Z = 2 :Hj(fj) . (15*

jeA

It should be apparent that the problem (157), (16) through (18) is identical
to the traffic assignment problem (1) to (4) except for the cost function.
However, as long as Hj(°) is convex, we may still use the algorithm set forth
in Section 2.2.2 to determine the optimum flows for the network design problem.

The original problem has thus been decomposed into a set of subproblems,
one for each link. These subproblems choose the optimum investments to be
made, while the master problem, i.e., the traffic assignment problem, adjusts
the network flows to achieve an overall system optimal solution. The final
set of optimal investment decisions may be obtained from the final flows fj
and the functions Ij(°).

The success of this approach to'the network design problem depends upon
how easily the functions Ij(') and Hj(') can be computed, and if, in fact,
Hj(-) is a convex function of total link flow. We consider these questions
in turn for each of the three investment formulation options described in the
previous section.

For the FHWA curve- case (20) and (21), the subproblems (34) and

(35) become

k
£,
Hj(fj) = min tjfj 1 + r(ézg—i—gg> . + 1gjzj . (37)

The solution of this problem is:

L » ngJ.g(CAj+Lj) ¢J.(x))
-1
Py £52 (CAj + Pj) 0;(0),

29

(o ok

£
j
JUSI, SE— L, X
t, £, 1+r(CAJ_ +L_) + gy Ly Osfjs(CAj+Lj)¢J(x),

| J
_
k
H.(f£,) = t,f.]+ (k+1)ro, (A - , CA,, (CA,+L.) ¢, £,
JE) = Qe e (e D)o ()F| - gy aap, (A L) 0,00 < £y (39)
_ < (CA, +P.)o.(n),
[< (ca, +2.)0.02)
tj fj 1+ r(m) + lgj Pj , £ > (CAj +Pj) ¢j(l) s

where ¢j(x) is constant for a fixed value of 1, and is given by

1
28, KL
*5() = [krtj] (10)

As discussed in tl], Hj(‘) is a convex function in this case, and both Hj(-)
and Ij(') are quite easy to evaluate for fixed 2

The determination of Ij(-) and Hj(') is somewhat more involved for the
two piecewise linear formulations of the previous section. Since both Dj(',')
and Gj(-) are piecewise linear in this case, both Ij(°) and Hj(') are
piecewise linear as well; thus, the two optimal functions need be determined
just once for a given value of A and thereafter may be used in the traffic
assignment procedure. We now describe briefly the approach taken to find these
functionsz |

We note first that the optimum zj is an increasing (although non-convex)
function of flow. Suppose, then, that at some flow value fj’ an optimal invest-
ment decision zj has been made, and that

(Kjl + Fjlzj) 4 ()-l-l)

h
[S
I
[*%
||[f’j g
’—l

30

and

- i
Z:i Z Zj s (42)

n
i=1

i.e., both fj and zj are at the ends of linear segments m and n on the

Dj(-,-) and Gj(-) curves, respectively. Now if it is possible to make further
investments (i.e., n < Nj)’ there are two choices available as f increases:
either one may extend the current Tj(') segment by investing, or one may go

on to the next Tj segment. The unit cost of the next segment is, of course,
just C?+l » SO the Hj(-) function will have a slope of C?+l in the second case.
In the first case, an investment of one unit contributes a cost of Ag?+1 to

Hj(-). In addition, there are contributions from all segments 1, 2, ..., m~1

which are now changed in length. The Hj(-) function slbpe in this case is

m m
i n+1 i
(Xt wa) /20 -
i=1 i=1

The decision to invest or not may be made by comparing C?+l with the
expression (43). Thus, a linear segment of the Hj(') function is created.
Its length depends on the length of the (n + l)-st investment segment in
case one, or the length of the (m + l)-st travel cost segment in case two.
The process is then repeated as is illustrated by Figure 2.3.

In [1], it is established that Hj(°) is a convex function of flow in
this case. Note, however, that to apply the Frank-Wolfe Algorithm, it is
necessary to use the "corner-rounding" method of Section 2.2.2 because

the function Hj(-) is not differentiable at the breakpoints.

31

Social Transportation /

Cost 1
H=T + AG
[
i
Flow, £
T
Optimal
Investment, I
|
1 i
[
i
i
j
Flow, f

Figure 2.3 - Optimal Cost and Investment Functions for Piecewise Linear
Formulations

32

2.3.3 Problem Formulation -- With Budget Constraint

In this form of the network design problem we wish to minimize the
total travel time of all users in the system subject to an upper bound on total

investment:

MINIMIZE 2z = Z Dj(fj, zj) j (L)
jeA

subject to

N\ r
L fj -ijr = hir R (’iGN; r=1, L R) ’ (11'5)

jeWi jEVi
R
£, = Z £, (jeA), (146)
r=1
ch(zj) <B , (47)
jeA
fjr_>_o , (GeA; 1, . . . , R) , (48)
Ly<z, <Py (jea) . (49)

The notation here is the same as for the previous network design problem (15) to

(19) with the addition of the budget comstraint (¥7).

33

2.3.4 Solution Algorithm ~— With Budget Constraint

The solution technique for the problem (44) to (49) uses the method
described in Section 2.3.2; instead of using a fixed multiplier A, however,
the new algorithm adjusts this value (which is actually the Lagrange multiplier
for the constraint (47)) until an investment close to the budget B is found.

Consider what happens in the problem (15) to (19) as X changes. When
A is small, investment dollars have little effect on the objective function;
as) increases, however, marginal investments become less attractive, and the
travel time component of Z may be allowed to increase somewhat to cause a
decrease in investment. Thus, total investment is a monotone decreasing func-
tion of the Lagrange multipliér X, although possibly a discontinuous one as
illustrated in Figure 2.4.

The network design problem with a budget constraint may thus be solved
by dealing with a series of problems without budget constraints, each with
a different value of A . As each problem is solved, the total investment
:E:Gj(zj) is compared with the budget B; if investment is over the budget,
the value of A is increased for the succeeding problem, while the multiplier
is decreased when investment is below the budget. Eventually, the situation
depicted in Figure 2.4 results if the budget constraint is binding; two values
of A are found for which the optimal total investments straddle the required
budget. Further adjustment of A may be carried out by Bolzano search (inter-
‘val bisection) or by a linear interpolation technique; the latter is the
approach implemented in CATNAP.

The algorithm is terminated whenever an investment sufficiently close to

B is found, or else whenever the difference Ikz - ll| is sufficiently small.

34

INVESTMENT 1
EXPENDITURE

ZGj(zj) o~

BUDGET, B

~.

[p]
=

Al AZ LAGRANGE MULTIPLIER
A

Figure 2.4 - Variation of Total Investment with Lagrange Multiplier

35

The final vectors of optimal investment decisions {Z2j} and {le} may

then be linearly combined, so that the budget constraint (47) is exactly
satisfied; a final traffic assignment optimization for this budget schedule
completes the solution of the network design problem.

2.3.5 User Equilibrium Assignment

As mentioned previously, the network design problem solution algorithm
requires that traffic be assigned to the network in accordance with a system
optimal objective function. This is necessary so that the problem may be de-
composed into the link subproblems.

The system optimal objective is satisfactory for some types of networks
(e.g., rail lines), but it is inappropriate for others (e.g., highway networks),
where the behavior of individual users would seem to call for a user equilibrium
traffic assignment. The network design objective in this case remains the mini-
mization of total user travel time, possibly subject to a budget constraint,
but the traffic assignment objective in this case is given by Eq. (6), while
the objective function is evaluated while using a different relation (5). The
decomposition method cannot be applied to this problem.

A fairly simple means was devised in [1] to deal with this situation.

If we denote by Zﬁ the unknown actual optimum value of the objective function
(total travel time) in the network design problem with user equilibrium assign-
ment, then it is possible to obtain some bounds on Zg based on the solution
obtained by a system optimal traffic assignment. It we let Zg be the total
travel time for the final system configuration in the system optimal case, and
if we perform a user equilibrium assignment of traffic in this configuration

. . . s
letting the resulting time be Zu » then we have

36

z*_<_z < z (50)

If the wvalues Z: and Zi are fairly close, we may then assert that the opti-
mal investment pattern for the user equilibrium problem (whatever it may be)
results in a total travel time not much better than the investment pattern
obtained from the system optimal problem., CATNAP has the capability of find-

*
ing both Zs and Zz in the same run in which the final configuration is determined.

2.3.6 Network Design with Discrete Investments

A limitation of the network design solution methods of Sectiomns 2.3.2 and
2.3.k is that they require the investment decision variable zj to be continuous
even though in some cases they should be considered as discrete. For example, it
makes little sense to add one-half or two-thirds of a lane to a highway link;
note, however, that it may be perfectly reasonable to repave the first two miles
of a five mile link and thereby obtain a partial improvement in the free-flow
travel time,

The discrete investment network design problem is a very large integer-
nonlinear program which is certainly beyond the capability of present-day com-
puting resources even for moderate size mnetworks. CATNAP thus approaches the
task heuristically using a cost-benefit criterion to find a local discrete invest-
ment solution from the optimal continuous investments obtained in solving a net-
work design problem as described above.

Let us assume that the continuous investment optimum solution has flow f?
and investment decision z? on link j. Assume further that the two discrete

*
investment decision options for each 1link j which are closest to zj are z

e O

* *
and zg with z? < zj < zg ; note that z? may well be zero. Now if zj

*
is very close to onme or the other of these options (say, Izj - z?l <e) ,

37

then that option is chosen as the discrete investment decision; otherwise the

cost benefit ratio

63(5) - 65(25)

a * b ¥*
-, £.) - D.(z,, £,
i’ J) J(j’ J)

>.(2 ’ (51)
J
is computed.

All arcs are then ordered by cost benefit ratio, smallest first. After
allowing for investments made on arcs for which ratios were not computed, the
lower bound sum) Gj(zja) is found and subtracted from the budget B |,
The first arc on the list is then tested: if Gj(z;J) - Gj(g;) 1is less
than the remaining budget, the higher investment decision z; is adopted and
the budget adjusted; otherwise, the lower decision z;' is made. This pro-
cedure is repeated for all other arcs on the list until a set of discrete in-

vestment decisions satisfying the budget constraint is found.

2.4 INVESTMENT STAGING PROBLEM

The investment staging problem consists of making improvements to a trans-
portation network over a multi-period time horizon. Each period is assumed to
have its own budget limit and its own set of trip demand requirements; these
requirements typically change in such a way during the planning horizon that it
becomes more efficient to add some improvements earlier than others. There are
two versions of this problem: one in which the ultimate configuration of the
network is specified in advance, and the other in which the final configuration
is to be determined as part of the problem.

Approaches to the investment staging problem which attempt to deal with

all stages at once result in problems which are much too large; accordingly,

38

our solution method involves decomposing the problem so that it can be solved
one stage at a time. The stages which are considered to be most important by
the user are solved first; the results of the first solved stages are used in

the solution of the other stages to insure comsistency in the overall solutionm.

2.hk.1 Problem Formulation

The investment staging problem consists of a set of network design prob-
lems indexed over a set of time periods, t=1, . .. , T . The formulation
for each period is the same as in Section 2.3.3 except that the additional

subscript t is used to identify the period.

b = Z Djt(fjt’ zjt) ’ (52)
jeA
Z fjrt Z fjﬁ: = bl ., (ieN;r=1, ;) R) (53)
jewi JeVi
R
e =) fh (Jed) (5%)
r=1
Z 6i(ze) =B, (55)
jeA
fjl;:io s (JeA; r=1, ... ,R) , (56)

39

R < .. < z, R t=2, 3, ..., T-1 57
ZJ,t-l - th _'ZJ:t+l () (57)
251 z_Lj s (jea), (58)
ij §_PJ . (jeA). (59)

The notation here is basically the same as that employed earlier except for
the subscripts t as mentioned above.

The investment decision variable zjt is the total capacity added to
link j during the first t stages, so that constraint (57) expresses the
linkage between time periods, namely, that improvements cannot be removed
once they are installed; further, no improvement may be undertaken in the
current period unless it is also undertaken in the succeeding one.

Note that in (53) the supply-and-demand quantities hzt for each node

may change over the time horizon, and that the budget Bt in (55) also

varies in time (it is assumed that Bt >

—-Bt—l’ i.e., the budgets are cumulative).

The objective function (52) for this subproblem gives the total travel
time in a single period; the investment staging master problem then seeks to
minimize all the Ut values, t =1, ..., T. As mentioned previously, attempting
to deal with all Ut's simultaneously results in problems which are generally
intractably large; consequently, we choose an ordering of stages, from most
important to least, so that we may deal with one stage at a time. A useful
ordering is T, 1, 2, ..., T-1; for this choice, the master problem objective
function is

LEXICO - MINIMIZE [Ug, Uy, «ees U o1 (60)

T-1

40

This notation means that we first solve the problem (52) to (59) for stage T,
minimizing UT by an appropriate choice of investment decisions ZjT' We
then solve the stage 1 problem, using the investment values found for stage T
as upper bounds in (57).

We may specify any order for solving the subproblems. Let the

first stage to be solved be «(l), the second a(2), and so forth; the objec-

tive function is then

LEXICO - MINIMIZE [Ua(l)’ Ua(Z)’ ooy Ua(T)]' (61)
The bounds (54) in each subproblem are selected not necessarily from the
immediately succeeding and following stages (which may not have been solved),

but rather according to

lower bound: M%X[z.

j,a(0)f T < t, a(r) < a(t)] (62)

upper bound: M%N[zj,a(r): T <t, a(t) > a(r)] . (63)

The above discussion has centered on the investment staging problem for

which the final configuration must be determined, i.e., z,

< P,. When the
jT— 73

final configuration is fixed we exchange this constraint in constraint set (59)

for

z.. = P, (jeA) , (64)

where Pj is the specified final investment for link j. The stage T sub-
problem is solved as a traffic assignment problem if the flow pattern is

required.

41

2.4.2 Solution Algorithm

Given the discussion in the previous section, the proposed solution
method for the investment staging problem becomes quite clear: a series of
T network design problems are solved by the Lagrange multiplier technique
of Section 2.3.4. (Only T - 1 problems need be solved when the stage T
configuration is fixed in advance.) The set-up phase for each problem requires
the addition of the investment decision bounds according to (62) and (63)
if we call these bounds th and Pjt’ it is clear that the resulting con-
straint is identical in form to (49), so that nothing new has been added
to the problem itself.

All the features described in Section 2.3 for the network design pro-
blem with budget constraint are applicable to the single period subproblems
of the investment staging problem. In particular, the discretization heuristic
of Section 2.3.6 may be applied to any or all of the étages; in this case, the
bounds (62) and (63) will use the discrete rather than continuous investments.

Also, any of the three improvement options of Section 2.3.1 may be used.

42

3. COMPUTER PROGRAM

3.1 INTRODUCTION AND OVERVIEW

Control Analysis Transportation Network Analysis Program (CATNAP) is
a high speed, in-core network optimization code designed to solve all the
problems described in Section 2 of this report. It consists of about twenty
program modules which are divided into three main groups: data input, traffic
assignment, and network design (see Table 3.1). 1In this section, we present
a summary of the main features and interrelationships of these groups; more
complete descriptions are provided in Sections 3.2 to 3.4. Detailed instruc-
tions for the program user (data formats, job control language, etc.) are
contained in the appendices. See Figure 3.1 for a general flow diagram.

Because CATNAP is intended to solve large problems, the input modules
have been designed to accept data from a series of different files on tape
or disk rather than sequentially from cards; this allows the user maximum
flexibility. Raw input data are read from these files and are processed by
the input modules into a compact internal representation; the internal form
may then be saved in a new file and used to save processing time when starting
a subsequent run.

Separate input files are used for the network topography data, for
the trip table, for investment data, and for investment bounds and staging data.
If piecewise linear approximations are generated, these may also be saved
and used as input on a later run. The current version of CATNAP uses the
same input format as the Federal Highway Administration (FHWA) UROAD code,
thus allowing the new program to be used without modifying existing data

sets.

43

TABLE 3.1: SUMMARY OF MODULES IN CATNAP

MODULE NAME FUNCTION
INPUT GROUP
INPUT Exercises overall control
ECHO Prints summary of basic parameters
RDLD Reads network topography
RDTMX Reads trip matrix
RDINV Reads investment data
PWLA Sets up piecewise linear approximations
RDBND Reads investment bounds
LPGEN Generates LP formulation
RESTRT Restarts problem from get-off dump

TRAFFIC ASSIGNMENT GROUP

TASSGN

SOLVE

PWEVAL/PWVALS

FLOWS

PATHS

SRCH

TCOST

GETOFF

SOTOUE/UETOSO

Exercises overall control

Finds total travel time and slopes
Evaluates piecewise linear approximations
Finds feasible flow patterns

Solves shortest path problem

Finds optimum flow by golden section search
Finds travel times without slopes

Produces get-off dump for later restart
Converts between system optimal and user

equilibrium objectives

NETWORK DESIGN GROUP
LKSB
LSRCH

ADJUST

Sets up solutions to link subproblems
Finds new Lagrange multiplier by regula fals:
search

Finds and evaluates final solution

DATA MODULES (COMMON BLOCKS)

PARMS
PROB
LINK
TRIPS
INVST
APPX
WORK

Contains basic parameters

Contains investment and flow values

Contains network topography data

Contains trip demand data

Contains investment data

Contains piecewise linear approximation data

Contains work arrays

44

| | COMPACT
RAW DATA READ . _ TITLE AND | DATA
| PARAMETERS ON FILE
|
| | e
'l —_—
LINK DATA READ NETWORK DATA S~ 1 7 LINK DATA
t-__._________.—-—"
' 1
| | o _—
TRIP DATA “==“L"€J READ TRIP MATRIX ===4%==%=%>- TRIP DATA
l ____—/
| STAGING
| DATA
LINK
INVESTMENT READ LNVESTMENT INVESTMENT
| e
| - DATA
INVESTMENT | ——
BOUNDS
===
| L.P. MATRIX
SOLVE MPS FORMAT
LINK DECOMPOSITION l
PROBLEMS,
MULTIPLIER | CONTROLLED
REPORTS AND
PERIODIC
SOLVE HUMPS
TRAFFIC ASSIGNMENT
PROBLEM,

USING FRANK-WOLFE

L

CHECK TERMINATION
CONDITIONS

ADJUST
FINAL
SOLUTLON

L

ADJUST LAGRANGE
MULTIPLIER

==—=——=> FLOW OF DATA
—————> FLOW OF CONTROL

Figure 3.1 - Flow Diagram of CATNAP

45

The input routines also find an initial feasible flow pattern; this may
be one determined in a previous run, or it may be computed by assigning all
trip demands to the shortest time path without regard to congestion. This
determination of a feasible flow pattern is at the heart of the CAINAP code;
it is done by a subroutine called FLOWS. This routine repeatedly invokes the
shortest path routine PATHS which is an implementation of the Di jkstra algorithm
using a heap structure [5]. FLOWS then accumulate all trip demands over the
arcs on the shortest paths.

Although they may be initially invoked by the input modules, FLOWS and
PATHS are actually part of the traffic assignment module group. This group
implements the Frank-Wolfe algorithm by generating a sequence of trial
feasible flow patterns; each of these in turn results from calling FLOWS with
the marginal cost of Fflow on each arc as the distance measure for PATHS.
Separate routines are provided to determine these marginal costs, and also to
find the optimum combination of the old and new flow patterns by golden section
search.

A variety of user options are available for directing the operation of
these modules; the various iteration counters, output flags and tolerance values
are summarized in Table 3.2. One notable feature of the traffic assignment
group is the built-in get-off feature which allows the problem state to be
saved on a disk file for a later restart. This feature remains in effect even
when the traffic assignment code is embedded in a network design run.

The network design modules will typically be invoked from a main program;
they give the use the capabilities of setting up all the link subproblems

(i.e., finding the optimum investment on each arc), of directing the Lagrange

46

TABLE 3.2: BASIC SYSTEM PARAMETERS IN CATNAP WITH THEIR MEANINGS

NAME TYPEL USE

MAJOR PARAMETERS

NS I Stage number for staging problem

(= 0 for no staging)
BUD R Budget for network design problem

(= 0 for traffic assignment only) _
ALAM R Initial value for Lagrange Multiplier
UE L If TRUE, objective is user equilibrium

(traffic assignment only)

ITERATION COUNTERS

KIMAX - I Maximum Lagrange multiplier iterations
K2MAX I Maximum traffic assignment iterations

(per Lagrange multiplier)

PROBLEM DATA FLAGS

IOLD I Controls processing of problem
I0TMX I Data (Link Data, Trip Matrix,
IOINV I INVestment data, investment BouNDs,
IOBND I PieceWise Linear curves) as follows:
IOPWL I 0 Input raw data
1 Input previously saved internal
data
2 Raw input, save internal form
INITIALIZATION FLAGS
ISTART 1 If nonzero, start problem from old get—
off file (unit 51)
IFLOW I If zero, start initial flows from

scratch, other wise read them from

unit IFLOW

1
The "Type" column uses the following code: I, for integer; L, for
logical; and R, for real.

TABLE 3.2 (continued...)

NAME TYPE USE
OUTPUT COUNTERS
(no output if value
if zero)
KOUT1 I Print detailed flow summary every KOUI
Lagrange multiplier iterations
KOUT2 I Print detajiled flow summary every KOU1
Frank-Wolfe iterations
IDUMP I Save a get-off dump every IDUMP
Frank-Wolfe iterations
PRINT FLAGS (no
output if wvalue
is FALSE)
PRINTP L Print basic piecewise linear approxime
tions
PRINTL L Print optimal investment and cost
piecewise linear curves for each
multiplier
PRINTS L Print detailed golden section search
results
PRINTD L Print debug output
APPROXIMATION FLAGS
PWT L Use piecewise linear approximations or
all arcs if TRUE
PWI L Use piecewise linear approximations or
on investment arcs if TRUE; only on
time improvement arcs if FALSE
LP L Dump an LP formulation of the problem

if TRUE

48

TABLE 3.2: (continued...)

NAME TYPE USE
TOLERANCES
FWTOLI R Relative tolerance on objective function
in golden section search portion of the
Frank-Wolfe algorithm
PHITOL R Absolute tolerance on the weight
parameter in golden section search
FWTOLO R Relative tolerance on objective function
in the Frank-Wolfe algorithm
BTOL R Absolute tolerance on the budget
(network design)
TLAM R Absolute tolerance on the Lagrange
multiplier (network design)
DLAM R Initial step size for adjusting the
Lagrange multiplier

49

multiplier search and of adjusting the final solution. This final adjustment
may merely change the investments slightly, so that the budget constraint is
exactly met, or it may round the continuous investment variables to integer
values using the heuristic described in Section 2.6. 1In either case, a last
traffic assignment run is carried out for the post-investment configuration of
the network.

The investment staging method described in Section 2.4 consists of a series
of network design runs, one for each stage. The linkage between stages is ex-
pressed by the requirement that zjt < zjs for t < s ; the staging algorithm
has thus been implemented by using CATNAP's capability to set bounds on invest-
ments. A data file contains a summary of the optimal investments for all stages
previously solved; these values are used as upper and lower bounds for the
current stage being solved. (For stages preceding the current stage in time,
the investments are lower bounds; for stages later in time, upper bounds.) Once
the final adjustment has been completed for the current stage, its investment
decisions are added to the file to be used for subsequent runs.

More complete descriptions of the algorithms used in each CATNAP's
modules are given in Sections 3.2 to 3.4; the aim is to present the main features
of the techniques leaving the detailed logical specification to the comments
accompanying the computer code itself. An overall system flow diagram is in-
cluded as Figure 3.l. Section 3.5 describes the capabilities and requirements

of CATNAP, while Section 3.6 discusses potential extensions and modifications.

50

3.2 DATA INPUT MODULES

The data input modules have as their main purpose the complete initializa-
tion of the problem. Secondary purposes include the generation of a linear
programming formulation of the problem in MPS format and the saving of compact
internal data representations for later use.

Overall control of the input function is exercised by subroutine INPUT.
This module first reads a set of control cards and then invokes the other in-
put and initialization routines as required. There are five control cards
containing 29 basic parameter values; the names and meanings of these parameters
are indicated in Table 3.2, while detailed formats are given in Appendix B.

Subroutine ECHO prints a summary of these input parameters once they
have been checked for consistency.

As has been mentioned, CATNAP is designed for data input from a series
of files, each of which is given a unique number. The conclusion of data of
a particular type is thus signaled by an end-of-file condition rather than by
a sentinel or dummy value; this makes it considerably easier to handle large
problems. The disadvantage is that a somewhat complex organization of files
is now needed; this is set forth in Table 3.3 with some sample job control
languagé given in Appendix C.

The first data input file contains the description of the network topog-
raphy; the current version of CATNAP accepts input in the format used in the
UROAD code. There is one card for each link giving the initial and terminal
node numbers for the link as well as information from which the zero—-flow
travel time and practical capacity may be found. This file is processed

by subroutine RDLD (for ReaD Link Data).

51

TABLE 3.3:

DATA SETS USED IN CATNAP

NUMBER SYMBOL DESCRIPTION USE
5 ICONT Read control cards IN
6 10UT Printed output ouT
6 IERRU Error messages ouT
41 LINKD Raw link data IN
42 NEWLD Raw data for new links IN
43 ITRIPD Raw trip matrix IN
44 INVD Raw investment data IN
45 IBND Raw investment bounds IN
46 LINKS Saved link data IN/OUT
47 ITRIPS Saved trip matrix IN/OUT
48 INVS Saved investment data IN/OUT
49 IBNDS Saved investment bounds IN/OUT
50 IPWLS Saved approximatiomns IN/OUT
51 IRST Restart unit IN
52 IGTOF1 Get-off unit 1 OUT
" 53 IGTOF2 Get-off unit 2 OUT
54 LPOUT,NF LP formulation output 0ouT
55 IFLOW Saved flow pattern IN
56 ISOL Saved flows and parameters ouT
60 IBDIN Staged investments IN
61 IBDOUT Staged investments oUT
1

Data sets are referred to by symbol name in the code; the actual data
set numbers are initialized in COMMON block PARMS in a BLOCK DATA subroutine.

52

Once data for all of the arcs have been read, a compact representation
of the network is created in COMMON block LINK. The arcs are sorted by their
origin node index in increasing order; the process is simplified by keeping
a linked list structure during data input. Using this scheme, a specific arc
has an index which depends on_the network topology, and which may well change
if new arcs are added. For this reason, data describing new arcs to be con-
structed in a network design problem must be made available to the link data
subroutine. Also, all references to a particular arc in either input data or
in printed output give the initial and terminal node numbers of the arc rather
than relying on a specific arc index.

Sorting the arcs by origin node allows an efficient representation of
the network. An array called INDEX gilves the arc indices of the first arc
leaving each node; thus, the arcs leaving node N are INDEX(N), INDEX(N) + 1, ey
INDEX(N + 1) - 1. The destination node of arc J 1is stored im the array
I1J, while the arrays CA and T store the practical capacity and free-flow
travel times, respectively. For a problem with N nodes and A arcs, then,
the total storage requirement is just 245 A + L N words (since both INDEX
and IJ may be half-word integer arrays). This organization is used in the UROAD
system and also in Dial [8].

The second input file comntains the trip-demand table; this file is proc-
essed by subroutine RDTMX (for ReaD Trip MatriX). There is likely to be a
great deal of data in this file since the UROAD input format specifies a
single card for each origin-destination pair. CATNAP has the convention that
0-D nodes have the lowest index numbers; thus, the trip table may be readily
stored in a Z x 2 matrix, where Z is the maximum number of 0-D's (also
called zones). Because of limitations in the input data as well as the need

to conserve storage, the trip matrix is stored as half-word integers.

53

Since shortest path problems must be solved for each origin node in the
network, a determination of which zones are never origins but only destinations
is made by RDIMK. This information is stored in the one-byte (quarter word)
logical array NOTORG; a shortest path problem is needed for node I only if
NOTORG(I) has the value FALSE. This array brings the total memory requirement
to %-Zg +12 words, where Z is the number of zones.

Tt should be noted that most of the computer memory in really larze prob-
lems (say, over 1000 nodes) is needed for the trip matrix. Since the only
function of this data is to load the correct flows onto the network in the
generation of a new feasible flow pattern, only the information for a single
origin needs to be in core at any given time. Thus, modification of RDTMK to
set up a disk file containing demand data by origin is needed to manage very
large transportation networks; such modifications would not be very difficult.

The third input fi;e contains the investment data; there will be no such
data, of course, for traffic assignment problems. A single card is needed
for each discrete investment possibility on each 1ink. This card contains the
arc identification (i.e., initial and terminal node numbers), the cost of the
investment and the effect of the investment (i.e., the post-investment link
capacity and free-flow travel time). Up to nine discrete investments may be
specified for each arc; each investment must monotonically improve the arc
parameters over all investments which involve a lower amount.

It is likely that the majority of arcs in practical network design prob-
lems will not be candidates for investment. To conserve storage, therefore,
each invéstment is given an index number when its card is read and an auxiliary
array (INV) is used to indicate which investment number is applicable for a
specific link; INV(J) = O implies that no investment is possible on link J .
This results in a total computer memory requirement of G%C + 1A words, where

C is the total number of investments and A the number of arcs in the problem.

54

The cost, final free-flow travel time and final capacity are stored for each
investment. In addition, investments for a given arc are linked together into a
list; the INV array entry points to the most expensive possibility, while a link
field for each investment indicates the next cheapest option. Also needed for
each investment are storage for a constant as well as for the investment bounds,

The exact interpretation of the stored values for a particular investment
depends on the type of improvement involved. If the most expensive investment
has the same free-flow travel time as the unimproved link, the other discrete
investment possibilities on the arc are normally ignored until the final ad just-
ment phase of the problem and the continuous capacity improvement method (option .,
1) described in Section 2.5.2 is used. (Note that use of the piecew;se linear
formulation may be forced by setting the input parameter PWI to TRUE; in this
case, the values have the same meaning as for time improvements below.) The

stored values corresponding to this capacity improvement are interpreted as

follows:
INV(J) ‘Investment index, arc J ; denoted by NC below ,
TNEW (NC) New free-flow travel time; equals T(J) in this case ,
CANEW (NC) New capacity; must be greater than CA(JT) .,
ZLOW (NC) Initial lower bound on improvement; set to zero .
ZHIGH(NC) Initial upper bound on improvement; set to CANEW (NC) - CA(J),
COST(NC) Equals input cost divided by ZHIGH(NC); i.e., unit cost

for capacity increase, gj.

CONS (NC) Used to find ¢j(x) ; equal to
1/(k+1)
85
krt, .
J
LIST(NC) Points to the next cheapest investment (zero if none
exists).

55

Other discrete investment options in the capacity improvement case above are
stored with the CONS value set to zero and with the COST value as input. These
options are used only to round off the final continuous solution if the tech-
nique described in Section 2.3.6 is used.

When any of the investment possibilities for a link involve a decrease
in the free-flow travel time, a piecewise linear formulation is required as
described in Section 2.3.1 (option 3); this will also be true for every in-
vestment whenever either of the input flags PWI or PWT are set to TRUE (option

2). 1In this case, the stored investment values are:

INV(JT) Investment index, arc J ; denoted by NC below
TNEW (NC) New free-flow travel time; will be less than T(J) .
CANEW (NC) New practical capacity; may be greater than or

equal to CA(J).

ZLOW (NC) Set to zero,

ZHIGH(NC) Set to CANEW(NC) .

COST(NC) The input total cost for the improvement.
CONS (NC) Not used; set to zero

LIST(NC) Points to the next cheapest investment .

Once the investment possibilities have been set and printed out by sub-
routine RDINV (for ReaD INVestment data), the PieceWise Linear Approximations
are generated for each arc by subroutine PWLA. These approximations are for
both Tj(°) and Gj(-) curves; a multiplier array to indicate the amount
by which a given improvement changes the length of the linear segments is also

required.

56

The travel-time curves are at present generated from the basic FHWA
non-linear curve (see (7), Section 2.2.1). The length of each segment is a
multiple of the input practical capacity, while the slopes depend only on the
free-flow travel times. Using the FHWA congestion function with r = 0.15, k = 4,

and the intervals now set in CATNAP results in:

Segment Length Slope
1 1.0000-CA(J) 1.1500-T(J)
2 0.3582°CA(J) 2.5168-T(J)
3 1.1418-cA(J) 13.2223°T(J)
L 1.0000:CA(J) 65.1344-T(J)
Final - Unbounded 100. T(J) + 200

The user may select any number of segments from two to five; note that the
last segment always has the slope listed for "Final."

Whenever investment is possible on a particular link, the multiplier
value F? must be found for each segment in the travel-time curve according to
Egs. (31) and (32) in Section 2.3.1. The interleaving of reduced slope seg-
ments described in Section 2.3.1 must also take place whenever link investment
involves a lower zero-flow travel time. Subroutine PWLA has provisions for
both these features.

Piecewise linear investment functions are also determined by PWLA. On
arcs where only capacity improvements occur, investment functions are computed
only when PWI is set to TRUE. In this case, the function gives the cost in
monetary units of a specific increase in link capacity; the breakpoints in
the function are determined by the input discrete investments for the arc.
Since the investment function used for network design must be convex, however,
the adjustment depicted in Figure 3.2 will take place whenever the discrete
investments lie on a non-convex curve.

57

Arbitrary

Monetary
Units //////7
Discrete InvestmenEs\\x

No Investment

Capacity Units

Figure 3.2: Generation of Piecewise Linear Investment Curve
(Solid Line) from Input Discrete Investments

A similar adjustment is called for on arcs where improvements involve
free-flow travel time. 1In this case, however, the abscissa of the investment
curve ranges over the total final capacity of the link rather than over the
change in capacity. This is because the travel~time curve segments corres-—
ponding to the new free-flow time are required to expand from a zero initial
value to the final 1link capacity.

All of the piecewise linear approximations are stored in the common block
APPX according to the following scheme. Since most links in really large
problems will not have piecewise linear approximations, a single pointer array
LCP is used just as the INV array is used for investments, i.e., LCP(J) indicate:

which approximation is to be used for arc J with LCP(J) = 0 implying that

58

none exists. A second pointer array is used for each piecewise linear func-
tion; the units digit of this pointer value gives the number of segments in
the approximation, while the rest of the pointer indicates the locatiom of

the first function slope in a slope-breakpoint array. The following example

should help to clarify this:

LCB(14) koiéi(u) & \asat(e) 0.115
LCP(15) L SBT(T) 412.0
e o 2 pairs SBT(8) 0.612

No piecewise linear approximations have been generated for arc 14 in this case
since LCP(14) = 0; arc 15, however, uses approximation 4. The time curve for
arc 15 consists of two linear segments since the units difit of LCT(4) is 2;
the first slope for the time curve is stored in SBT(6) (LCT(4)/10 = 6), and
the first segment has a width of 412 units (SBT(7)).

Locator arrays and slope~breakpoint arrays are provided in APPX for
travel-time curves Tj(-) (LCT and SBT), investment curves Gj(-) (LCI and SBI),
optimal social transportation cost curves Hj(-) (LCC and SBC) and optimal
investment curves Ij(-) (LCIO and SBIO). The latter two curves are
initialized by LKSB for each Lagrange multiplier value; see Section 3.4.

A separate locator array is needed for the capacity expansion fractions F?
(LCF and F); in this case, the number of points need not be stored as it is
just one less than for the corresponding travel time curve.

It is somewhat difficult to determine the total amount of storage needed

for the piecewise linear approximations; it is clear though that these requirements

59

will seriously limit the size of the problem which CATNAP can solve unless
most of the arcs use nonlinear curves. If we thus assume that piecewise
linear approximations are used only for time-improvement investments and that
four segments are used in the time curve, an estimate of the storage require-
ment is 3 A + 44% P, where P 1is the maximum number of investments.

The final input module is called RDBND (for ReaD investment BounDs); its
function is to set upper and lower limits on the amount of money spent on a
given improvement. The bounds are tested when an investment decision is made
for a link during a network design problem, and the decision is forced to con-
form to the bounds. It is far more convenient, however, for the network design
code to impose the bounds directly on the improvements rather than on monetary
amounts. The input data, which are in monetary units for user convenience, are
thus converted by RDBND to bounds on the improvements which result from the
specified investments; recall that these improvements are in units of capacity.

RDBND also reads in the results from all previously solved stages in an
investment-staging problem; these results are saved in compact form in a file
on an external storage device. The first record on the file consists of a
vector indicating which stages have already been solved; this vector is updated
for the current stage, and then written out on a new file. Solutions from the
other stages are read in one at a time and used for bounds as described in
Section 3.1; those solutions required for subsequent stages are then also
written out on the new file. Note that it may be unnecessary to save all of
the input solutions; for example, the stage 1 results need not be saved
when the problem currently under comsideration is for stage 2 since the current
results will provide uniformly better bounds for subsequent stages. The
solution to the current stage is added to the output file (unit 61) by subrou-

tine ADJUST; see Section 3.4.

60

Once all the input data have been read, subroutine INPUT modifies the
capacity data when a user equilibrium traffic assignment is called for. Using
the FHWA curve (8) instead of (7) requires that all system capacities be multi-

plied by the factor (k + l)l/k

(see Section 2.2.1); this operation is carried
out by subroutine SOTOUE (for System Optimal TO User Equilibrium). The piece-
wise linear curves and investment data are also changed by SOTOUE. The final
user equilibrium solution, it will be recalled, must be evaluated using the
actual Tj(-) curve once the proper flow pattern has been found; the sub-
routine UETOSO (User Equilibrium TO System Optimal) is thus provided to change
the capacity parameters and related data back to the 0riginal values as input.

When a problem formulation as a linear program is called for (input
parameter LP; see Table 3.2), subroutine LPGEN is next invoked by INPUT. For
this to take place, of course, piecewise linear functions must be used on all
arcs in the problem (controlled by input parameter PWT). The output from LPGEN
is in MPS input format which is readily accepted by many commercial linear
programming codes.

The final operation performed by INPUT is the generation of an initial
feasible solution to the traffic assigmnment problem. This may be done by in-
voking subroutine FLOWS as described in the next section, or a vector of feasi-
ble flows found in an earlier run may be read in from an external source.

Alternatively, INPUT may invoke the restart routine to restore a previously

saved partial problem solution.

61

3.3 TRAFFIC ASSIGNMENT MODULES

The modules in this group implement the Frank-Wolfe traffic assignment
algorithm described in Section 2.2. Given the data structures and parameters
discussed in Section 3.2, the operation of these modules is quite straight-
forward. This section thus describes only the salient features of the algo~
rithms used, leaving details of the logic to the comments in the computer
code.

Overall control of the traffic assignment algorithm is exercised by
subroutine TASSGN. This module uses an iteration counter (K2) to determine
the number of Frank-Wolfe steps to be carried out (up to K2MAX; see Table
3.2). Because TASSGN is used with CATNAP's restart capability, K2 must be
set before the routine is called the first time. The K2 counter is also
used for controlling the amount of information printed out at each iteration.

The current flow pattern in the network is first evaluated by subroutine
SOLVE; recall that the input modules provide such a pattern when the problem
is initialized. This routine computes not only the total travel time on each
arc but also the slope of the travel time curve (using, where appropriate, the
"corner-rounding" technique of Section 2.2.2). For network-design problems,
SOLVE also determines the optimum investment amount and the resulting post-
investment travel time; the slope which is found in this case is for the
total social transportation cost function, i.e., Hg(fj)' The final function
of SOLVE is to print an iteration summary; this is controlled by the single
input parameter to the subroutine, N. If N = 1, SOLVE prints the flow on each

arc, while if N = 0, only a single summary line is printed.

62

Once all the marginal flow costs (slopes) have been found by SOLVE,
TASSGN next invokes FLOWS to find a new feasible flow pattern. This is done
by solving a shortest path problem for eachorigin node in the network using
the marginal costs as a distance measure and then assigning all the demands
originating at that origin to the shortest path. The shortest paﬁh subroutine
is called PATHS: it uses the Dikjstra algorithm with a binary heap which re-
sults in excellent performance for the typically sparse networks encountered
in traffic assignment applications. See reference [5] for a more complete
description. The assignment of traffic flows (called "arc loading") is
performed by FLOWS itself; the routine must have access to the trip matrix
fgr this reason. If it were necessary to store a very large trip matrix out
of core as discussed in Section 3.2 some straightforward changes to FLOWS
would be required.

The old and new flow patterns (which are stored in the arrays F1 and
F2, respectively) must now be linearly combined to produce an optimum pattern;
i.e., we find the value of ¢ such that the flow pattern (1 - ¢)Fl + ¢F2 has
the minimum total cost. Since this cost is a convex function of ¢, golden
section search is an appropriate method here and has been implemented in sub-
routine SRCH. See reference [4] for details of the algorithm and the deriva-
tion of a lower bound on the travel-time function. Two termination tests are
used in SRCH: an absolute test on the change in value of ¢ (input para-
meter PHITOL) and a relative test on the lower bound on the total travel time
(input parameter FWTOLI) SRCH will also terminate if the cost as a function

of ¢ is found to be non-convex; this is normally caused by computer round-off

63

error when it occurs. Because the computation of marginal costs by SOLVE

involves considerable overhead, a routine called TCOST which computes only
total costs is used by SRCH to evaluate total time for the various values

of ¢.

It has been found that CATNAP spends most of its time in shortest path
and arc-loading calculations and that golden section search is relatively in-
expensive., It seems best, therefore, to set the termination tolerances for
SRCH tight (e.g., PHITOL = 0.0001, FWTOLI = 0.00001); this makes the best use
possible of the expensive trial solution from FLOWS. However, the slow con-
vergence of the Frank-Wolfe Algorithm may possibly be speeded up if SRCH
chooses a suboptimal ¢; this may be a fruitful area for future work.

Once a finai value for ¢ has been returned to TASSGN, the flow vector
F1 is updated and a new lower bound on the objective function is found
according to Eq. (10) in Section 2.2.2. The traffic assignment algorithm
is then terminated if this lower bound is within a specified relative tolerance
of the objective function value (see parameter FWTOLO in Table 3.2). Termina-
tion will also occur if a zero value of ¢ is returned by SRCH, or if the
iteration counter K2 has reached K2MAX.

The problem state (all flows, investments and linear approximations) is
automatically saved by a call to subroutine GETOFF every IDUMP Frank-Wolfe
iterations (IDUMP is an input parameter; see Table 3.2). Note that in a
network design problem the ge;—off dump counter is independent of the Frank-
Wolfe counter K2. These get-off dumps are taken alternately on units 52 and
53; this is to prevent information being lost if program execution is halted

during the get-off process itself.

64

The final result of a traffic assignment run may be printed out by
simply invoking subroutine SOLVE. A complete main program for a traffic

assignment problem is thus given by the following cards:

COMMON cards for PARMS (contains K2)
CALL INPUT

K2 =0

CALL TASSGN

CALL SOLVE(1)

STOP

END

3.4 NETWORK DESIGN MODULES

The network design problem is the primary focus of the CATNAP code and
it is embedded in both the input (RDINV, RDBND) and traffic assignment (SOLVE,
TCOST) modules to a considerable extent. Nevertheless, there are several sub-
routines which are directly related only to the network design problem and
these are described in this section.

The main application of decomposition to the network design problem is
the determination of the optimum investment'for each link as a function of the
total traffic flow on that link alone. This so-called link subproblem is solved
by “subroutine SOLVE (or by TCOST during golden section search); some prelimi-
nary calculations are necessary, however, to set up the subproblems. These

calculations are performed by the module LKSB (for LinK SuBproblem).

65

LKSB first computes xl/(ki'l) for use with CONS in finding ¢j(1)
from (39). Next the functions Hj(-) and Ij(-) are found for all links
with piecewise linear travel and investment costs; the method described in
Section 2.3.2 is used. The resulting piecewise linear curves are stored in
common block APPX as discussed in Section 3.2.

Once a network design problem with a budget constraint has been solved
for a given value of the Lagrange multiplier, the multiplier must be adjusted
according to the total expenditure. This is the function of subroutine LSRCH.
For the initial problem (in which the multiplier is set to the input value ALAM,
see Table 3.2), LSRCH increases the multiplier if the total investment is greater
than the budget and decreases it otherwise. The multiplier is further increased
(or decreased) in later steps until a pair of investment vectors whose total
values straddle the budget is obtained; the step size for changing the malti-
plier (input parameter DLAM; see Table 3,2) is doubled in each successive step
until-the budget is straddled.

The situation after the budget is straddled is depicted in Figure 2.L;
corresponding to the two multipliers il and A, are respective total invest-
ments G1 and G2 with G1 >B > G2 . If either G1 or G2 is within
BTOL units of B , LSRCH returns a logical value of true to the calling rou-
tine to indicate that a satisfactory solution has been obtained; BTOL is an
input parameter (see Table 3.2). Otherwise, a new multiplier value between 1}
and Ao is found; this may correspond to a Bolzano (bisection) search in which

case we select

1
ro= o3 O+, (65)

66

or a linear interpolation (regula falsi) search may be used with

G, - B
A o= 7‘1*?6;(?‘2'11) . (66)

This second approach is currently used in CATNAP, but a change to (65) will be
very easy to implement. The linear interpolation method seems to perform better
when most improvements have nonlinear Hj(°) functions, while the bisection
technique is to be preferred whenever there are many piecewise linear components
in the problem.

As mentioned above, LSRCH returns a value of true for its single argument
when a satisfactory investment is found; this signals the calling rou?ine to
terminate the network design algorithm. A true value will also result when
the number of multiplier iterations reaches a preset limit (inpﬁt parameter
KIMAX; see Table 3.2) or when the difference between 11 and Kg is less
than an input tolerance (parameter TLAM; see Table 3.2)., If an argument value
of false is returned by LSRCH, another traffic assignment problem will be
solved for the new multiplier after LKSB has been invoked to set up the sub-
problem.

When all the multiplier interations have been completed, CATNAP provides the
capability to adjust and evaluate the final solution obtained; this is done by
the module ADJUST. For convenience we define here the terms used to describe

the various network configurations which may appear in this subroutine:

Final Continuous Solution - The result of the final Lagrange multiplier

iteration. Note that this need not be the best solution so far obtained, i.e.,

the one with investment closest to the budget.

67

Lower Solution - The solution with total investment closest to the

budget from below. If no such solution is found during the multiplier itera-
tions, a solution corresponding to the lower limits Lj on the investment
decisions is used.

Upper Solution - The solution with total investment closest to the

budget from above; note that the multiplier value for this solution is less
than for the lower solution. The configuration corresponding to the upper
limits Pj is used if a better one has not been found.

Adjusted Continuous Solution - A solution arrived at by taking a

linear combination of the investment values of the upper and lower solutions;
this is done so that ‘the budget constraint is always exactly satisfied. A
module Z is provided in CATNAP to find the investment decisions Z,
corresponding to the monetary values which arise in the finding the adjusted
continuous solution.

Discrete Investment Solution - This solution is the result of applying

the heuristic of Section 2.3.6 to the adjusted continuous solution; the
required flows f? are determined in a separate traffic assignment run for
the adjusted continuous solution.

Besides producing the adjusted continuous and discrete investment solu-
tions, ADJUST also solves one or more traffic assignment problems for the above
network configurations. These problems typically do not require many Frank-
Wolfe iterations because the existing feasible flow pattern for the final con-
tinuous solution is used as the initial feasible solution, and the optimal flow

pattern is usually not too different from this one.

68

A network design problem is first solved for the adjusted continuous
solution; this is actually a traffic assignment problem since both Lj and
Pj (investment decision bounds) are set to Ej’ which is the required
decision from the interpolation process. The result of this assignment is
a set of flows fg that may be used in the discretization procedure if the
user specifies that it is to take place.

The final configuration of the network is then determined from the dis-
crete investment solution (if one is found) or else from the adjusted con-
tinuous solution. This is done by modifying the capacity and free-flow travel-
time parameters for each link depending on the investment decision for that
link; for links with time improvements, the resulting model is not identical
to the adjusted continuous or discrete investment case with the investments
fixed.

The final configuration is then evaluated by means of two more traffic
assignment runs: one for a system optimal assignment and the other for user
equilibrium. The resulting total-travel times (Zg and Zi) may be used ac-
cording to (50) to get bounds on Z:. This enables the user to assess the
applicability of a system optimal network design solution to a user equilibrium
problem.

The user may specify the actions to be taken by ADJUST with a single
control card (see Appendix B for formats). The four logical variables set by
this card are interpreted as follows:

DISC If true, generate the discrete investment solution; if false,

the final configuration will be the adjusted continuous solution.

69

DUMP 1f true, the final configuration and final flows are saved on
an external data set.

SOTA If true, perform the final configuration system optimal traffic

assignment.

UETA If true, perform the final configuration user equilibrium traffic
assignment.

A second control card gives the unit number for saving the final flows and con-
figuration; this card need not be present if DUMP is false.

The final function of ADJUST is to save the final vector of investment
decisions when the network design run is one stage of an investment staging
run. This is added to the end of the output file created by subroutine RDBND:
see Section 3.2 for more details.

There is no overall control program for the network design problem to
correspond to the TASSGN module for the traffic assignment problem. A main
program for network design is not very long, however; a sample is given in
Appendix D.

3.5 CAPABILITIES AND LIMITATIONS

As has been mentioned, CATNAP has the capability of solving traffic
assignment, network design, and investment staging problems in large trans-
portation networks. In this section we indicate the limitations imposed on
CATNAP by the size of the problem to be solved.

The first major difficulty encountered in setting up a really large
network problem is the preparation of the input data sets in the correct format:
The input modules of CATNAP contain a large number of edit checks to detect

clearly erroneous input cards, but the amount of checking that can be done

70

in this way is limited. An erromneous node number on a link data card or an
incorrect trip demand figure, for example, will not be detected.

There are two main limitations which will be encountered as the pro—
blem size increases: CATNAP will require more computer main memory, and exe-
cution times will increase. The main memory is needed to store data des-
cribing the problem; the data structures used are described in Section 3.2.
All of the problem-size dependent arrays are stored in named COMMON blocks,

which are as follows:

PARMS 67 words; contains basic parameters.
LINK E%A + %N 4 3 words; contains the network topography.
PROB Maximum [3A + N, 3A + 3C + 22] words; contains the

current flows and investments.

TRIPS %ZE + %Z + 1 words; contains the trip table.

INVST %A + 63C + 2 words; contains the investment
possibilities.

APPX %A + hh%? words; contains the piecewise linear
approximations.

WORK Maximum [2C, 3N] words; stores temporary vectors.

The parameters indicated above have the following meanings:
A number of arcs in the network.
N highest node index used; this would be the number of nodes if

all possible indices are used.

71

C number of possible distinct investments in the network.

Z highest index for any zone (i.e., origin or destination) in the
network.
P number of arcs for which piecewise linear investments are needed.

Note that the core requirements are based on the use of the half word and
quarter word storage abilities of IBM System 360/370 computers.
Assuming that the number of investments C lies in the range N/3 <C

< 2N/3 , the total memory needed for the CATNAP arrays is given by

GLA + 33N + 93C + Mhkp + 327 i—z + 95 words . (67)

Since (67) is somewhat unwieldy, we make the following assumptions about the

other parameters in terms of the maximum node index, N

A = 3N,
z = N/5,
c = N/2,
P=C/3 = NJ6.

Using these values, (67) becomes

Total storage for N node problem = 02N + 35,28 + 95 words . (68)

To this value must be added the core required by the computer code itself as
well as for input-output buffers and system utility routines; when this is

done, the results in Table 3.4 are obtained. (Note that 1 Kbyte = 256 words.)

72

Even:though the coefficient of N° in (66) and (67) is quite small,
this term accounts for most of the storage when N > 2000; for this reason,
it is suggested that the trip table be organized into separate segments by
origin and kept on an external storage device with only the segment for the
current origin In FLOWS core-resident at a given time. This would require
some straightforward modifications to the modules RDTMX and FLOWS. The resul-
tant memory requirements (see Table 3.4) are within the capability of many

large computer installations, particularly those with virtual storage capability.

TABLE 3.4 COMPUTER MEMORY FOR CATNAP

Size of Problem Traffic Assignment Code Network Design Code
(Nodes) (Bytes) (Bytes)
100 110K _ 115K
200 120K 130K
500 165K 190K
1000 270K 315K
2000 360K* 450K .
5000 TLSK* 980K *
10000 1.309M* 1.874*

*
These estimates assume that the trip table is stored externally and is brought
into memory 100 origins at a time.

73

In contrast to the exact bounds which can be found for the memory
limitations on CATNAP, the determination of computer time requirements 1is
somewhat more difficult. The code has been tested on problems with up to
1450 nodes, 3800 arcs, and 160 zones, so that time estimates for larger pro-
blems are extrapolations. It is nevertheless believed that the figures in
Table 3.5 give reasonable values for requirements planning in dealing with

large networks:

TABLE 3.5 COMPUTER TIME FOR CATNAP

Size of Problem Traffic Assignment Code Network Design Code
(Nodes) (Minutes)* (Minutes)*
80 . 2%% .5

100 .25 .75
200 .5 2
394 1.3%* 3, 5%%
500 2 ' 7

1000 4. 5%% 15

1450 6.1%% 20

2000 10 30

5000 40 120

10000 90 270

%

Times are for the IBM 370 Model 168 Computer, and are based on 20
Frank-Wolfe iterations for the traffic assignment problem and 20
for the network design problem.

%
These times were observed in solving actual problems.

74

3.6 POTENTIAL EXTENSIONS AND MODIFICATIONS

To solve practical transportation network problems, a computer
code must be both efficient and flexible. CATNAP, although originally
envisioned as an exploratory tool, is both efficient and flexible enough to
be used as a production code. The code is organized in a highly modular
fashion and improvements are relatively easy to implement.

In this section we outline some extensions and modifications which
are potential enhancements for the code. They fall into one or more of

the following four general categoties and are given approximately in that

order:
a) Broaden the capabilities of the code.
b) Increase the size of problem which can be solved.
c) Improve the efficiency of the code.
d) Enhance user convenience.

CATNAP has the capability of accommodating a variety of travel-time
curve formulations besides the FHWA curve (7). Introducing a new nonlinear
curve would involve changes in several of the pProgram modules.

As described in Section 3.2, piecewise linear travel-time curves are
derived from the basic FHWA curve. If alternative derivations are desired,
only module PWLA is affected.

Several enmhancements to the network design problem are possible. One
would involve the introduction of a pPiecewise linear convex Gj(-) function
with the first investment option (capacity improvement , nonlinear Hj(-)
function). Another possibility is to allow for selective discretization,
i.e., some links must have discrete investments while others have continuous

ones. It would be possible to allow "negative" improvements; e.g., to

75

obtain an increase in the budget by decreasing the capacity of a given
link. This might be useful in a deferred maintenance model.

As mentioned in Section 4.4, the Schimpeler-Corradino heuristic
developed in [7] has not been added to CATNAP.

Each of these features could be implemented without much difficulty.

Another extension to the network design problem which might be use-

ful to the planner is the ability to impose several independent budget
constraints. The constraints might be non-overlapping, as would be the
case for regional budgets relating to disjoint regions; or they could be
overlapping in the sense that the same investment opportunity might appear
in more than one budget constraint. There are several ways of implementing

this feature.

The final improvement in the category of increasing planner options
is that of incorporating a rigorous branch-and-bound procedure for finding
an optimal network design solution with discrete investments in place of
the current heuristic procedure. This would be a major extension.

An extension (which has already been mentioned) that would increase
the problem handling capacity of CATNAP is the use of external storage
for the trip table in very large networks. It would be easy to modify the
modules RDTMX and FLOWS to incorporate this change. Further, the system
could be made to accept rectangular, as well as square, trip tables.

Another improvement relating to problem size and efficiency is to
incorporate a dynamic core allocation feature so that dimensioning of arrays
is "custom-tailored" for the problem in hand.

Currently node numbers are used as indices to locate data relevant
to the node, which implies that if there are significant gaps in the node
numbering sequence an inefficient use of storage results. By building a
referrénce array and treating node numbers as node names this inefficiency

could be avoided.

76

There are several algorithm variations which could be explored to
improve the efficiency of the code. In the Lagrange multiplier procedure
the Frank-Wolfe iterations could be terminated Prematurely as soon as it
became evident that the current multiplier value was not yielding expenditures
close to the budget limit.

The slow convergence of the Frank-Wolfe Algorithm toward the final
solution represents an area for further investigation. One possibility is
to modify the arc-loading operation in FLOWS so that only a subset of the
origins is investigated at a time while holding the flows from the other ori-
gins fixed; this modification can require the use of external storage for
the fixed-flow vectors. Another possibility, already mentioned, is purposely
to choose a sub-optimal ¢ in the golden section search with the hope of
finding a better direction of improvement on the succeeding trial solution.

Another improvement in the golden section search procedure would be
to treat the non investment arcs in a different and more efficient manner
than the investment arcs in the cost calculation phase.

A better initial lower bound could be found in the Frank-Wolfe proce-
dure by solving the traffic assignment problem assuming no congestion.

The shortest path algorithm could be improved in CATNAP by changing
the list pProcessing rules to conform to Some recently published results by
Pape.

When piecewise linear travel cost and investment functions are in
use there is an alternative way to solve the subproblems in network design,
which could prove to pe more efficient than the current method. This pro-
cedure is to preprocess and solve the H functions as functions of the Lagrange
multiplier for each investment arc. The critical multplier values, where the

form of the H function changes, would be recorded.

77

Lastly there are some improvements which would enhance the user con-

venience aspects of CATNAP. These features are mainly concerned with input

and output organization. A set of default parameter values could be invoked

for those parameters not set by the user and more flexibility could be pro-

vided for input and output.

78

4. NUMERICAL RESULTS

In this section, we summarize the results obtained from applying
CATNAP to some actual transportation network problems. The intention is
to compare the performance of the new code with the results of previous
workers as well as to indicate the capability of CATNAP to solve problems
which are large enough to be of pPractical interest to transportation planners.

The first Section (4.1) summarizes the details of the actual test
pProblems which CATNAP has solved. Section 4.2 describes the performance
of the Frank-Wolfe traffic assignment algorithm, and Section 4.3 gives
results for a comparable network design problem; the latter section also
contrasts CATNAP's performance with that of another approach. A compari-
son of results is also undertaken in Section 4.4 for the investment—staging
Problem. Finally, Section 4.5 sets forth Some recommendations for further

testing.

4.1 TEST PROBLEMS SOLVED

Two basic networks have been used in testing CATNAP: A 24-node "toy"
network, which is described in Section 4.1.1, and a 394-node network, which
is described in Section 4.1.2. The generation of data for the investment
staging problem is discussed in Section 4.1.3. A version of a network
representing Washington, D.C. has also been run, but only in the traffic
assignment mode; this Problem contains 1451 nodes and 3738 arcs with 163

zones.

It has been the aim in developing CATNAP to Produce a code capable
of solving practical transportation problems. The only problem described
here in detail which is in any sense ''practical' is the 394-node model of
Sioux Falls, S.D., discussed in Section 4.1.2; the 24-node example is in-

cluded here only because the related network design problem is as large

79

as can be reasonably managed by commercial LP codes. It is also planned
to test CATNAP further on some larger problems; see Section 4.5.

4.1.1 Twenty—four Node Sample Problem

The 24-node problem originally presented in the network design study
conducted by Northwestern University is reported in [6]. The network has
24 nodes and 76 arcs, and has been developed by the Northwestern researchers
from the model of Sioux Falls, S.D., described in Section 4.1.2. An illustra-
tion of the metwork topography is reproduced from [6], and is included as
Figure 4.1. The problem has an almost symmetrical 24-zome trip table and a
set of 10 possible investments, some of which improve travel time and some
capacity.

The original formulation of this problem in [6] included capacity para-
meters and trip demands in units of vehicles per day; these have been con-
verted to the vehicles per hour figures used in the UROAD code, sO that the
existing CATNAP input modules could be used. A set of five possible in-
vestments was also specified in [6]; these were constrained by the formulation
to be "two-way' improvements; i.e., equal investments are required in each
direction on the two arcs between a pair of nodes. These investments have
been converted into a set of 10 single-arc improvements with the proper
capacity and time units for use with CATNAP. The numerical results reported
here thus will not be the same as those indicated in [6]; for purposes of com—
paring solution methods, however, the problems are essentially similar.

4.1.2 Three-Hundred-Ninety-Four Node Sample Problem

The 394-node problem represents the city of Sioux Falls, S.D. It
is of moderate size as a highway transportation network; 394 nodes and 1042

arcs with 84 zones. (Note that node indices are set aside for the additional

80

D

-

i
=

=
o
|
T
|
—(=)

w

—(11Y A10%

|
N
1u)_ L15
23 —J 22
{JL
13— {241 {21
‘\2/ N/

Figure 4.1 -- Twenty-four Node Sample Problem

zones 85 to 99; the actual network topography, then, has only 379 distinct
nodes, but the storage and processing-time requirements are the same as

if there were 394 actual nodes, and so the latter is used to indicate the
size of the problem.)

The trip-demand data for this problem result in fairly severe conges-
tion with vehicle flows on some arcs approaching two oOr three times practical
capacity. The trip matrix is not completely symmetrical, but it is sufficiently
so to provide roughly equivalent flows in both directions between pairs of
nodes joined by a two-way linkage.

No investment data was provided for this network, and so a set of 103
different possible improvements has been developed; links which the traffic
assignment problem solution described in Section 4.2 showed to be congested
were chosen for investments. Only capacity improvements have been
selected, so that the nonlinear Hj(') curve formulation (option 1) of
Section 2.3.2 can be used. The investment amounts were chosen to be
roughly proportional to the actual arc lengths, but considerable variation
was allowed.

4.1.3 Investment Staging Sample Problem

The investment-staging results reported in Section 4.4 used the basic
394-node problem discussed in the previous section. The same network topo-
graphy and investment possibilities were used for each of the four stages;
different budgets were adopted, however, and the trip table was also
modified.

The basic trip table was used without modification for stage 1. All
trip demands were inflated by 20 percent for the stage &4 problem, while a

random inflation factor was determined by choosing a pair of randomly distribu’

82

numbers between 0 and 20 for each O0-D pair; the minimum of these was the
percentage increase for stage 2, while the maximum was used for stage 3.
4,2 TRAFFIC ASSIGNMENT RESULTS

The CATNAP code has been tested on several small problems including
the 24-node example of Section 4.1.1. These runs verified that CATNAP
operates correctly since the expected results were obtained in each case.

A system optimal traffic assignment problem was also solved for the
394~node example of Section 4.1.2; this was done both to determine the time
required by CATNAP to solve such large problems and also to investigate
the convergence of the Frank-Wolfe Algorithm. An added benefit was the
generation of a vector of flows which was used as a good initial feasible
solution for the network design problem.

- The results of the traffic assignment are plotted in Figure 4.2 and
summarized in.Table 4.1. Note that the Frank-Wolfe lower bound gives a
fairly good convergence criterion, and that the final approach to the
optimal solution is quite slow. Results which are correct to within 3 or
4 percent are obtained after 15 to 20 iterations, however, and this seems
reasonable for practical applicatioms.

The problem was solved on the IBM 370 Model 168 computer; as noted
in Table 4.2, the total time was less than 4 minutes for 60 Frank-Wolfe

iterations. The total computing cost was under 50 dollars.

83

TOTAL TRAVEL TIME (1000 MINUTES)

1000

950

900

850

800

750

700

LOWER BOUND

OBJECTIVE FUNCTION

CONVERGENCE OF THE
FRANK-WOLFE TRAFFIC ASSIGNMENT
ALGORITHM
FHWA MODEL OF SIOUX FALLS, S.D.

394 NODES, 1042 ARCS, 84 ZONES
JANUARY 1976

L L i

10

20

30 40 50

ITERATION

Figure 4.2 -- Traffic Assigmment Algorithm Convergence

84

TABLE 4.1: TRAFFIC ASSIGNMENT ALGORITHM CONVERGENCE

Iteration Computer Total Travel Difference of Difference of
Time Time Lower Bound Final Bound
(minutes) (minutes) (percent) (percent)

1 0.26 3,372,100 100.00 74.70
5 0.49 1,016,200 42.45 15.54
10 0.77 922,100 12.60 . 1.47
15 1.06 891,400 6.24 4.28
20 1.34 876,800 3.80 2.69
25 1.62 869,000 2.38 1.82
30 1.91 865,000 1.78 1.36
40 2.48 860,700 0.99 0.86
50 3.05 858,700 0.68 ~0.63
60 3.78 857,600 0.51 0.51

4.3 NETWORK DESIGN RESULTS

The first network design problem solved by CATNAP was the 24-node
example problem described in Section 4.1.1. Piecewise linear travel-time
functions with four segments (the last was unbounded) were used on each
of the 76 arcs; the problem as thus formulated is a linear program and may
be solved by any general-purpose linear-programming code. This technique was

suggested for the network design problem by Morlok, et al. [6].

85

To compare the two approaches (CATNAP and the LP), a commercial LP
code (IBM's MPS/360) was used to solve the 24-node network design problem.
The problem has 702 rows and 2868 columns; this is a fairly large linear
program (although a very small network), and it required 7929 simplex
iterations and over 40 minutes of IBM 370/168 computer time to solve. The
total computing cost was over 530 dollars; the optimal objective (total
travel time) was 16,285 minutes.

By comparison, CATNAP needed 5 Lagrange multiplier and 93 Frank-
Wolfe iterations to solve the same problem; this required just over 10
seconds of computer time for a cost of less than 3 dollars. The final
solution resulted in a total travel time of 16,698 minutes which is within
2.5 percent of the optimum found by MPS.

It is probably not completely fair to the Northwestern formulation
to use a general-purpose linear-programming code for solution (although
that is what is suggested in [6]). A code which uses a shortest path rou-
tine to obtain an initial feasible solution together with a column genera-
tion scheme to implement the simplex method would certainly improve on the
poor performance reported above; the difficulty which remains is the very
large size of the linear program even in a small network. This difficulty
prevents the Northwestern results from being applied to any practical trans-
portation problems.

The second network design problem was chosen to demonstrate CATNAP's
ability to solve such problems in large networks. The 394-node network of
Section 4.1.2 was solved in 10 Lagrange multiplier iterations, starting with
the feasible flow pattern which was found after the 60 Frank-Wolfe iterations
used in the traffic assignment run described in Section 4.2. The network
design problem required a total of 110 additional Frank-Wolfe iterations.

The solution is summarized in Table 4.2.

86

A total of 5.63 minutes was needed to solve this problem; the total
cost was about 68 dollars. It should be pointed out that the tolerances for
this problem were purposely set very tight, and that more Frank-Wolfe itera-
tions were allowed than are strictly necessary. A satisfactory solution can
probably be obtained from scratch in about 3.5 minutes for a cost of about
40 dollars. The total cost for both the network design and traffic assign-
ment solutions was about 115 dollars.

The 394-node network design problem was also subjected to final adjust-
ment by subroutine ADJUST; see Section 3.4 for more details of this process.

The following results were obtained when this is done (the pre-investment

TABLE 4.2: NETWORK DESIGN ALGORITHM CONVERGENCE

Objective
Iteration | Lagrange Total Total Function Frank—Wolfe
Multiplier | Investment Travel time | Maximum Error Iterations
(dollarsg minutes) (percent)
1 0.5000 29,810 778,900 0.31 40
2 0.6000 27,810 779,700 0.28 9
3 0.8000 23,940 782,200 0.32 10
4 1.2000 17,800 787,910 0.29 18
5 2.0000 11,880 796,620 0.30 21
6 1.5783 13,410 793,860 0.29 4
7 1.4414 14,170 792,670 0.32 3
8 1.3861 14,390 792,360 0.36 1
9 1.3530 14,800 791,740 0.31 3
10 1.3425 14,840 791,670 0.31 1

87

solution is given for comparison):

System Optimal User Equilibrium

Solution Tota%ngggggg Time Tota%wgﬁixi}\Time
Pre-investment 857,600 936,540
Adjusted Continuous 791,470 859,480
Discrete Investment 825,060 897,150

It can be seen that the bounds suggested by (50) are not especially
tight in this case (the difference is about 8 percent), so that we cannot
claim, based on the bounds, that the adjusted continuous system optimal
solution is particularly close to the best user equilibrium solution. Note,
however, that the degradation in total travel time is comparable for all
three cases above, so that the solution may not in fact be far off. Note
also the higher travel time which results from the discretization process.

4.4 INVESTMENT STAGING RESULTS

The most practical approach to the investment-staging problem developed
prior to the current study seems to be the heuristic method described by
Schimpeler-Corradino Associates in reference [7]. This is largely because
no other known solution technique can deal with large networks in a reasonable
way.

The basic Schimpeler-Corradino method is to compute a cost-benefit
ratio for each investment possibility and then to select the 'best" invest-
ments which can be accommodated within the budget. The cost-benefit ratios
are found by comparing a traffic assignment with all of the network improve-

ments present to a traffic assignment on the unimproved network; this is

88

done initially for the final stage (for which the configuration must be
specified) with the budget figure for stage T - 1. The resulting set of
investments is then fixed for stage T - 1, a new traffic assignment is
performed, and the budget for stage T - 2 is used with the new cost-benefit
ratios to determine the stage T - 2 configuration. -The procedure is repeated
until all stages have been specified.

The original method described in [7] sets forth some very complex
means for finding cost-benefit ratios; since these techniques make explicit
use of the individual commodity flows f§, they could not be implemented with
CATNAP which uses only the aggregated link flows fj' One heuristic described
in [7] could be used, however; this defines the "benefit'" on an investment
link to be "total vehicle-miles saved." If we let fjt be the flow on
link j for the stage t traffic assignment, CAj be the unimproved
capacity, and Zj be the length of the link in miles, then the cost-benefit
ratio is given by

CBR,, = Gj(Pj) - Gj(Lj)) (69)

jt L.(f.. - CA, - L
I T B

Where Pj and Lj are the bounds on the possible improvement. The ratios
found from (69) are then used with the budget Bt-l to select the best
improvements to be made at stage t - 1.

The main advantage of the Schimpeler-Corradino approach is that it

requires only a single traffic assignment (say, 20 Frank-Wolfe iterations)

at each stage instead of the more expensive network design problem (about 60

89

Frank-Wolfe iterations). The disadvantages include the complexity of the
method (especially when heuristics more sophisticated than (69) are employed)
and the fact that a simple cost-benefit ratio cannot take into account

the complex interactions between sets of improvements in the network. Also,
the sequence of stages (T, T - 1, ..., 2, 1) in this case is fixed; it is
pointed out in [1] that other sequences (for example; T, 1, 2, ..., T - 1)
may be more appropriate. Finally, the Schimpeler-Corradino method requires
that the final network configuration be specified in advance, and this may
require a separate network design run.

The four-period investmenf—staging problem described in Section 4.1.3
was solved using both the Schimpeler-Corradino method and the lexico-
graphic objective function of Section 3.4.1. The cost-benefit ratios (69)
and the corresponding investments were determined manually for the Schimpeler
Corradino method; this method has not been added to CATNAP. The sequence of
stages for the lexico-graphic method was (4, 1, 2, 3). Both solutions used
system optimal traffic assignment and continuous investments.

The results of the investment staging runs may be summarized as follow

Traffic Total Travel Time
Stage Increase Budget CATNAP Schimpeler-Corradino
Stage (percent) (dollars) (minutes) (minutes)
0 0 0 857,595 857,595
1 0 6000 812,453 819,751
2 Random;
about 7 11000 852,122 870,532
3 Random;
about 13 15000 917,750 924,328
4 20 17980 991,313 991,313

an

The proposed CAC method clearly results in lower total travel times than the
Schimpeler-Corradino method; the differences are not great however, and the
lexico-graphic approach needed about three times as much computer time

(cost per stage of about 95 instead of 35 dollars).

4.5 RECOMMENDATIONS FOR FURTHER STUDY

The development of a computer code useful to transportation planners
requires that a variety of real problems be solved during the code's develop-
ment. This not only permits testing and debugging of the code, but also
allows the introduction of enhancements which increase its utility to the
eventual user.

CATNAP has thus far been used only for the moderate-size 394-node
network discussed in Section 4.1.2 Plus a preliminary traffic assignment
case for the larger Washington, D.C. model. It is Planned to solve several
larger problems in the near future; models of Minneapolis - St. Paul,
Minnesota and Washington, D.C. with up to 1500 nodes are expected to be
used for this purpose.

The authors feel that the testing of CATNAP's network design and
investment staging capabilities should be continued. 1In particular there
is a real need for network design problem with actual investment data to

extend the results reported here to real Problems.

91

REFERENCES

[1] Dantzig, G.B., Maier, S.F., and Lansdowne, Z.F., "Application of
Decomposition to Transportation Network Analysis," Control Analysis
Corporation Technical Report No. DOT-TSC-0ST-76-26, October 1976.

[2] Dijkstra, E.W., "A Note on Two Problems in Connexion with Graphs,"
Numer. Math., vol. 1, p. 269-281, 1959.

(3] Luenberger, D.G., Introduction to Linear and Nonlinear Programming,
Addison-Wesley, Reading, Mass., 1973, p. 134-137.

[4] McKnight, R.W., '"Greatest Lower Bound on a Convex Function of Unknown
Nature," Control Analysis Corporation Technical Report, No. R-60-FG,
November 1976.

[5] Robinson D.W., "Analysis of a Shortest Path Algorithm for Transportatic
Applications,'" Control Analysis Corporation Technical Report No. R-53-1
March 1976.

[6] Morlok, E.K., Schofer, J.L., et. al., Development and Application of a
Highway Network Design Model, (Final Report Prepared for Federal Highw:
Administration, Environmental Planning Branch), Department of Civil
Engineering, Northwestern University, Evanston, Illinois, 1973.

(71 Schimpeler-Corradino Associates, Optimum Staging of Projects in a Highv
Plan, Report Prepared for Federal Highway Administration, Office of
Highway Planning, Louisville, Kentucky, March 29, 1974.

(8] Dial, R.B., Algorithm 360, "Shortest-Path Forest with Topological
Ordering," Communications of the ACM, vol. 12, no. 11, p. 632-633,
November 1969.

[9] Frank M., and Wolfe, P., "An Algorithm for Quadratic Programming,"
Naval Research Logistics Quarterly, vol. 13, p. 95-110, 1956.

92

APPENDIX A

CODE LISTING

A complete listing of the CATNAP code modules together with a sample
main program is distributed under separate cover and is available from

Control Analysis Corporation.

93

APPENDIX B

INPUT FORMATS

SUBROUTINE INPUT

Control Cards:

1. Title Card. Problem title in columns 1-72 (Format 18A4).

2. Stage Card. Stage number right-justified in colums 1-4
(Format I4). Field should be blank or zero if this is not an investment-
staging run.

3. Integer Parameters. Each parameter is right-justified in its

four-column field (Format I4); see Table 3.2 for meanings.

Columns Parameter Columns Parameter
1~-4 KIMAX 25-28 IOINV

5-8 K2MAX 29-32 IOBND
9-12 KOUT1 33-36 I0PWL
13-16 KOUT2 37-40 ISTART
17-20 IOLD 41-44 IDUMP
21-24 IOTMX 45-48 IFLOW

4. Logical Parameters. A T (for true) or F (for false) is punched

within the four-column field specified below (Format L4); see Table 3.2.

Columns Parameter Columns Parameter
1-4 PWT 17-20 PRINTP
5-8 PWI 21-24 PRINTL
9-12 LP 25-28 PRINTD
13-16 UE 29-32 "~ PRINTS

5. Real Parameters. Each value is punched with a decimal point

within the nine-column field given below (Format F9.0); see Table 3.2.

94

Columns Parameter Columns Parameter
1-9 FWTOLI 37-45 BTOL
10-18 FWTOLO 46-54 ALAM
19-27 PHITOL 55-63 DLAM
28-36 BUD 64-72 TLAM

SUBROUTINE RDLD

Link Data Card:

Columns Format Description

2-6 15 Origin node for link.

8-12 I5 Destination node for link.

14-17 - 14 Length of link (tenths of miles).

18 Al Type indicator. If S, the following number is
the speed in miles per hour; if T, it is the
time in tenths of minutes.

19-21 13 Time/speed field for traffic on the origin to
destination link ("forward 1link'").

32~36 I5 Vehicle flow in vehicles pér hour at which the
time/speed value is measured.

37 I1 Number of lanes for the forward link.

41 Al Type indicator as in column 18 (Note 1).

42-44 I3 Time/speed field for the link from destination to
origin ("reverse link").

55-59 IS5 Vehicle flow as in columns 32-36.

60 11 Number of lanes for the reverse link.

66 11 Facility type index (Note 2).

68 I1 Area type index (Note 2).

95

NOTES:

1. The type indicator field for the reverse link (Column 41)

may have the following additional values:

(Blank)
U

X

No reverse link (values
Reverse link parameters
Reverse link parameters

except reverse capacity

may be given on another card).
are identical to forward link.
are identical to forward link,

is one~half forwarded.

2. There are five different facilities and five different areas

specified by FHWA.

traffic lane according to the followi

Fach combination has its own practical capacity per

ng table (values are in vehicles per

hour):
FACILITY TYPE
AREA TYP
E 1 2 3 4 5
(Freeway)|(Expressway) | (2-way Art){(1-way Art) (Cent. Con.)|
1 (Central
Business
District) 1312 600 450 525 7500
(Fringe) 1312 750 412 412 7500
3 (Residential)} 1312 825 412 675 7500
4 (Outer CBD) 1312 750 412 688 7500
5 (Rural) 1312 825 412 1425 7500
New Link Card:
Columns Format Description
2-6 I5 Origin node for link.
8-12 15 Destination node for link.
16 Al Reverse link indicator. If this is U

a reverse link may be built; if not,

only the forward 1ink may be built.

New links are initialized with a capacity of 0.001 and a time of 1000 minu

96

SUBROUTINE RDTMX

Trip Demand Card:

Columns Format Description
1-4 I4 Origin node.
5-8 14 Destination node.

12-14 13) First trip table index on this card (Note 1).
15-16 12 Number of trip table entries on this card
(Note 1).

17-24
25-32
I8 Number of trips required from origin to
destination in each trip table.
65-72
NOTE:

1. A single input parameter to RDTMX specifies which trip table is
desired by CATNAP. Up to seven different demands may be specified on each
card, each demand corresponding to a different trip table index.

SUBROUTINE RDINV

Columns Format Description

1-4 I4 Origin node for link.

5-8 I4 Destination node for link.

9-20 Fl12.2 Total cost of improvement.

21-29 F9.4 Post-investment free-flow link travel time.
30-38 F9.4 Post-investment link capacity.

97

SUBROUTINE RDBND

Staging bounds are read from an unformatted file created by a previous

network design run.

Bound Card:
Columns | Format Description
1-4 I4 Origin node for link.
5-8 14 Destination node for link.
9-20 F12.5 Lower bound on investment (monetary units).
21-32 F12.5 Upper bound on investment (monetary units).

SUBROUTINE ADJUST

Control Cards:

Read from data set 5 immediately following the last control card

from INPUT.

1. Logical parameters. A T (for true) or F (for false) is

punched within the columns given below (format L&4).

Columns Parameter Description

1-4 DISC If true, adjust all investments to discrete
values; if false, leave them continuous.

5-8 DUMP If true, save the final network configuration
and the final flows on disk.

9-12 SOTA If true, do a systems optimal traffic assign-
ment on the final network configuration.

13-16 UETA If true, do a user equilibrium traffic assign-
ment on the final network configuration.

2. Data Set Number. Gives the data set number for saving the fina:
network configuration right-justified in columns 1 to &4 (Format I4). This

card need not be present if DUMP is false.

98

APPENDIX C

JOB CONTROL LANGUAGE

The CATNAP code has been writtin in IBM's version of FORTRAN IV,
and it is intended to be run on System 360/370 computers. In particular,
extensive use is made of special data types (half-word integers, quarter-
word logical variables), subroutine linkage conventions (e.g., ENTRY
statements), and input-output feastures (END = option on the READ statement),
all of which are "peculiar" to the IBM implementation of the language.
Modification of the code for another computer system will be somewhat
involved but would not change the basic structure of CATNAP; there could be
a considerable cost in storage however, if all the half-word integer arrays
were increased to full-word storage.

Because of the dependence of the current version of CATNAP on 360/370
computers, this section provides a summary of the job control language
needed to solve network problems using the code as an aid to the prospective
user. It is assumed that the reader is familiar with basic 0S/360 job
control language. Note that some of the examples given here may be incorrect
at some installations; therefore, they must be checked with local documéntation.

It is suggested that the source modules for CATNAP be separately com-
plied, and the object decks be kept in a subroutine library. Such a library
requires a total space of a least 14 6444-byte blocks (14 tracks on a model
2314 disk, 7 tracks on a model 3330), with sufficient directory blocks
for 21 different modules. Members may be added to the library using a stan-
dard FORTRAN compile/link-edit procedure with the parameter NCAL set for the
linkage editor. See Example 1 for details. (Members in the library may be

revised by specifying DISP = @LD on the last card.)

99

With all the of the CATNAP modeuls in a library, the running of a given
network problem requires only a small source language input. The sample
traffic assignment main program at the end of Section 3.3 or the network
design program of Appendix D are combined with the BL@CK DATA subprogram
given with the code listing in Appendix A; see Example 2.

The BL@CK DATA subroutine sets various constants used in CATNAP.

These include all data set reference numbers (see Table 3.3 and below) as

well as the following parameters:

NAMAX Maximum number of arcs in the problem.

NCMAX Maximum number of distinct investments in the problem.
NNMAX Maximum number of nodes in the problem.

NTMAX Maximum number of piecewise linear curves in the problem
NZMAX Maximum number of zones in the problem.

R FHWA curve parameter T (currently set to 0.15).

KEXP FHWA curve parameter k (currently set to 4).

NT Number of piecewise linear segments desired in the Tj(-)

curve approximation (between 2 and 5).
RK Constant equal to r(k + 1.
The first five parameters above give the dimensionality of the arrays set up
for CATNAP in the various C@MM@N blocks, and thus represent upper limits;
specific values for the number of nodes, etc., in a given problem are determ:
during data input.
The size of the various data sets required by the CATNAP code depends

largely upon the array dimension parameters. There are two basic types of d:

100

// EXEC F@RTCL,PARM.LKED='NCAL,MAP,LIST'

//FYRT .SYSIN DD *

Cards for module ADJUST

/%

/ /LKED .SYSLMJD DD DSN=CATNAP.LIB(ADJUST),V@L=SER=PUBOOL,UNIT=DISK,

// DISP=MgD

Example 1. Adding a module to the subroutine library; specific details
of the catalogued procedure may differ between installations.

// EXEC F@RICLG

//FPRT ,SYSIN DD *

Cards for main program

and BL@CK DATA subroutine

/¥

//LKED .SYSLIB DD DSN=CATNAP.LIB,V@1=SER=PUBOO1,UNIT=DISK,DISP=SHR

Example 2. Source language input for a CATNAP run. Many 0S implementations
require a slightly different specification for the subroutine
library.

101

set: raw input files which contain formatted card images, and compact files
which contain unformatted internal arrays which are saved externally.

The raw input data sets in CATNAP are as follows:

Number Symbol Use Specifications
5% ICONT Control cards Card reader input (SYSIN).
6% IpUT Normal output Line printer output (SYS@UT=A)
G IERRU Error messages Line printer output (SYS@UT=A)
41 LINKD Link data 80-byte card images
L2 NEWLD New links 80-byte card images
43 ITRIPD Trip matrix 80-byte card images
Ly INVD Investments 80-byte card images
Investment
L5 ~ IBND bounds 80-byte card images
54 LPAUT LP formulation 80-byte card images (output)

%
These data set reference numbers should conform to the installation-specific
assignments for the card reader (5 is used here) and line printer (6).

These data sets may consist of actual cards or may be files of card images on
tape or disk. Note that not all of these need exist for a particular CATNAP

run; those not needed may be DUMMY'ed out, if desired. See Example 3; in this
case, the link data are read from disk, there are no new link data, the trip
matrix is read from tape, and the investment data from cards. Also, the LP output
is directed to the punch. See Appendix B for the required formats for the input

cards.

102

{Source language input cards

(see Example 2)
//Gg .FTL1FOO1 DD DSN=CATNAP.INPUT.LINK,V@L=SER=PUBOO2,UNIT=DISK,
// DISP=@ID

/ /6@ .FTL2F001 DD DUMMY

/ /6@ .FTL3F001 DD V@L=SER=CACL5 ,UNIT=TAPE9,LABEL=(,NL),DISP=@LD

/ /69 .FTLLUFOOL DD *

Cards for investment
data

J*
/ /6@ .FT45F001 DD DUMMY
//c¥ .FTSLFOOL DD SYSGUT=B

//G@.SYSIN DD *

Control Cards

[*
Example 3. Raw data file specifications for a CATNAP run. It is assumed

that the catalogued procedure describes the line printer out-
put data set.

103

All the remaining data sets used by CATNAP are initially created by

dumping internal program arrays onto an external storage device; the arrays

are not written under format control both to save time and to prevent any

roundoff errors when the data are subsequently read back in.

Data sets for

FORTRAN unformatted write statements must be created using the VS or VBS

options for RECFM; to comserve disk storage space, it is recommended that

the VBS option (Variable—length, Blocked, Spanned records) be used.

When

using this option, it is necessary to specify the block size (which may be

selected for maximum efficiency with the external storage device) and the

length in bytes of the largest logical record to be written.

The internal arrays saved in the compact files generally coincide with an

entire COMMON block; thus the record length for the data set depends on

the problem size.

Using the array dimension parameters above, we have the

following requirements for compact data sets in CATNAP:

COMMON Blocks and

Number Symbol Arrays Saved LRECL

46 LINKS LINK 10" NMAX + 2-NNMAX + 16

47 ITRIPS TRIPS 2-NZMAX2 + NZMAX + 8

48 INVS INVST, array T in LINK 6 *NAMAX + 26-NCMAX + 12

49 IBNDS Arrays in PROB and INVST 16- NCMAX + 16

50 IPWLS APPX, array IJ in LINK Depends on the size of APPX;
roughly (40-NT-18) NTMAX +
4°NAMAX + 24°NCMAX + 4

51 IRST PROB, APPX Depends on the size of APPX;

52 IGTOF1 roughly (40-NT-18) NTMAX +

53 IGTOF2 12.NAMAX + 36¢NCMAX + 92

55 IFLOW Array F1 in PROB 4-NMAX + 4

56 ISOL LINK 10-NMAX + 2-NNMAX + 16

60 IBDIN

61 IBDOUT Array of investments 4+NCMAX + 8

104

Note that the maximum LRECL which can be specified is 32,768 bytes; if the
logical record 1ength'is larger than this, the parameter may simply be omitted

from the job control language.

The DCB parameters (RECFM, LRECL and BLKSIZE) described above and the
SPACE parameters for these data sets need be specified only when the file is
first created. To determine the space parameter, note that in most cases only
a single record is written on the data set; exceptions are ISOL (two records)
and IBDOUT (one record for each stage already solved plus one additional). The
required number of tracks, of course, depends on the particular disk drive
available.

An example of the compact data set specifications is included as Example L;

note the omission of the LRECL parameter from data sets 52 and 53, and the use of

previously assigned data sets (DISP=0LD).

105

Source language input and raw data cards
(see Examples 2 and 3)

/ /G .FTLEFO01 DD DSN=CATNAP.SAVE .LINK,V@L=SER=PUBOOL ,UNIT=DISK,

// DISP=(NEW,KEEP),DCB=(RECFM=VBS ,LRECL=16016 ,BLKSIZE=6LLk),

// SPACE=(TRK,(2,1))

//6@ .FTLTFOOL1 DD DSN=CATNAP.SAVE .TRIP,V@L=SER=PUBOO1,UNIT=DISK,

// DISP=@LD

/ /6@ .FTLE8FOOL DD DUMMY

/ /6@ .FTLOFOO1 DD DUMMY

//G@ .FTSOFOO1 DD DUMMY

//G@# .FT51F001 DD DSN=CATNAP .GET@FF1,V@L=SER=PUBOO2 ,UNIT=DISK,

// DISP=QID

/ /6@ .FT52F001 DD DSN=CATNAP.GET@FF2,V@L=SER=PUB0O3,UNIT=DISK,

// DISP=(NEW,KEEP),DCB=(RECFM=VBS ,BLKSIZE=644}),SPACE=(TRK,(3,1))
//G@ .FT53F001 DD DSN=CATNAP.GET@FF3,VJL=SER=PUBOOL ,UNIT=DISK,

// DISP=(NEW,KEEP) ,DCB=(RECFM=VBS ,BLKSIZE=6L4Lk) ,SPACE=(TRK,(3,1))
//c@ .FI55F001 DD DUMMY

/ /6@ .FTS6FO0L DD DUMMY

//cd .FTE0FOOL1 DD DSN=CATNAP.STAGE2,V@L=SER=PUBOOL,UNIT=DISK,

// DISP=@LD

//G@ .FT61FO0L DD DSN=CATNAP.STAGE3,V@L=SER=PUBOOS ,UNIT=DISK,

// DISP=(NEW,KEEP),DCB=(RECFM=VBS ,LRECL=1008 ,BLKSIZE=6LLL),

// SPACE=(TRK,(1,1))

Example 4, Compact data sets needed for a CATNAP run. SPACE parameters will
depend on the type of disk drives available.

106

APPENDIX D

SAMPLE NETWORK DESIGN MAIN PROGRAM

The following main program may be used to solve network design problems:

COMMON /PARMS/ TITLE(18), BTOL, BUD, DLAM, EPS, FWIOLI,
+ FWIOLO, IBDIN, IBDOUT, IBMND, IBNDS, ICONT,
+ IDUMP, IERRU, .IFLOW, IGTOFl, IGTOF2, INVD,

+ INVS, I0UT, IPWLS, IRST, ISOL, ISTART,
+ ITRIPD, ITRIPS, KEXP, RKOUT1l, KOUT2, KIMAX,

+ K2MAX, LINKD, LINKS, LPOUT, NAMAX NCMAX
+ NERR, NEWLD, NNMAX, NS, NT, NTMAX,
+ NZMAX, PHITOL, R, RK, TLAM, LP,
+ PRINID, PRINTL, PRINTP, PRINTS, PWI PWT,
TA, UE
LOGICAL*1 LP, PRINTD, PRINTL, PRINTP, PRINTS, PWI, PWT
+ TA, UE
c
COMMON /PROB/ 21, 2T, 2T, ZN, ZLIM, K1, K2, ALAM, PHI, KH, KL,
ALl, AL2, ZI1, ZI2, zZT2, ALAMK, F1(1500), F2(1500),
+ Cs(1500), AINV(500), AINV1(500), AINV2(500)
REAL*8 Z1, ZI, 2T, ZN, ZLIM
c .
LOGICAL DONE
C
C --- READ PROBLEM DATA
CALL INPUT
C CHECK RESTART /GETOFF FLAG

107

¢ ---

50

100

IF (ISTART .GT. O) GO TO 100

LAGRANGE MULTIPLIER LOOP BEGINS HERE

SET UP LINK SUBPROBLEM SOLUTIONS

CALL LKSB

SOLVE TRAFFIC ASSIGNMENT PROBLEM
CALL TASSGN

KR=K+1

PRINT PROBLEM SUMMARY (IF REQUIRED)

N=20

IF (MoD (K1, KOUT1) .EQ. 0) N =1

CALL SOLVE (N)

GET NEW LAMBDA
CALL LSRCH (DONE)
IF (DONE) GO TO 150

K1 =KL +1

END OF MULITPLIER LOOP

GO TO 50

108

--- PRINT FINAL CONTINUOUS SOLUTION
150 IF (UE) CALL UETO0SO
IF (UE) ZLIM = 0.0

CALL SOLVE (1)
WRITE (IOUT, 200)

200 FORMAT(//!'OFINAL CONTINUOUS SOLUTION')

--- FINAL ADJUSTMENT (NETWORK DESIGN PROBLEM ONLY)

IF (.NOT. TA) CALL ADJUST

-~~~ ALL DONE
STOP

END

109

APPENDIX E

DEFINITION OF SYMBOLS

In this Appendix are gathered for ready reference definitions of the
symbols appearing in the mathematical formulas in this report. Each sym-

bol is also defined in the body of the report where it is first used.

Symbol Definitions
A) The set of arcs in the network.
B The total budget amount for improvements

in the network design problem.

B The total budget for periods 1, 2, ..., T
in an investment staging problem.

Cj(°) The average (per unit) travel cost function
for travelers on link j.

c The slope of the mth segment in a piecewise
linear travel cost function for link j.

CAj The practical capacity of link j (measured
in vehicles/hour, trips/day, etc.)

CBR,) The Schimpeler-Corradino cost-benefit ratio
for the improvement on arc j to be under-
taken in time period Et.

D,.(*,*) The travel cost function for arc j for a

specified flow (first argument) and investment
(second argument).
,*) The travel cost function for arc j in

stage t of an investment staging problem.

110

Symbol Definitions

fj The total flow on arc j-.

f§ The flow on arc j which originated at
origin r.

f? The optimum total flow on arc j.

jt The total flow on arc j at stage t of
an investment staging problem.

f§t The flow on arc j at stage t which ori-
ginated at origin r.

F? The multiplier which specifies the change
in the width of the mth segment of the
piecewise linear travel cost curve for arc
j for each unit of improvement on the arc.

Flj The total flow on arc j at the beginning
of a Frank-Wolfe iteration.

F2j The trial flow on arc j generated by the
Frank-Wolfe procedure.

gj The unit cost of improvement on arc j.

n th .

gj The slope of the n segment of the piece-
wise linear improvement cost curve for arc j.

n . th , .

Gj The width of the n segment of the piecewise
linear improvement cost curve for arc j.

Gj(°) A function which gives the cost (in monetary

units) of a given improvement (in capacity

units) for arc j. This is normally a linear

(slope g) or piecewise linear (slopes g? s
J

segment widths G?) curve.

111

Symbol Definition

h The net supply (positive) or demand (negative)
at node i for trips originating at origin
r.

hit The net trip supply/demand at node i
for origin r during stage t of an invest-
ment staging problem.

H.(*) A function giving the minimum social trans-
portation cost (weighted combination of
travel time and investment dollars) for arc
j as a function of flow.

i A subscript used to index the nodes in the

network; ieN.

I.(°) A functibn giving the optimum improvement
decision (i.e., the one minimizing social
transportation cost) for arc j for a
fixed value of flow on the arc.

j A subscript which is used to index the arcs
in the network; jeA.

k The exponent used in the FHWA congestion
function (7).

K The width of the mth segment in a piecewise
linear travel cost function for arc j.

[3 The length of arc j 1in miles.

L. A lower bound on the improvement to be

undertaken on arc j (capacity units).

112

Symbol

Definitions
A subscript used to index segments on the
piecewise linear cost (travel time) curve
on each arc j; m = 1, ooy Mj.
The number of segments in the piecewise
linear travel cost curve for arc -
A subscript used to index segments on the
piecewise linear improvement cost curve
for each arc j; n = 1, ..., Nj'
The set of nodes in the network.
The number of segments in the piecewise
linear improvement cost curve for arc j.
The number of trips which originate at
origin i and terminate at destination j.
An upper bound on the improvement to be
undertaken on arc j.
(1) A subscript used to index nodes from
which trips may originate ("origins");
r=1,...,R.
(2) The multiplier used in the FHWA congestion
function Eq (7).
The number of origin nodes in the network;
these are taken to have indices 1,...,R.
A subscript used to index periods in the
planning horizon for an investment staging
problem; t =1, ..., T.
The free-flow (uncongested) travel time for
arc j.

113

Symbol

The

Definitions

number of time periods in an investment

staging problem.

The

The

for

The

The

total travel cost function for arc j.
total travel cost (summed over all arcs)
stage t in an investment staging problem.
set of arcs which terminate at node 1.

set of arcs which originate at node 1i.

A decision variable giving the amount of the

m

segment of the piecewise linear travel

cost curve for arc j which is needed to

match the total flow on the arc.

The

improvement decision for arc j; measured

in capacity units.

The

optimum improvement for arc j.

The improvement decision for arc j at

stage t of an investment staging problem.

A discrete improvement decision for arc j

which is less than the optimum decision z§ .

A discrete improvement decision for arc j

which is greater than the optimum decision

z%,
]

The objective function value for a traffic

assignment (total travel cost) or network

design (total social transportation cost)

problem.

114

